
z/OS

DFSMSdfp Utilities

SC26-7414-02

���

z/OS

DFSMSdfp Utilities

SC26-7414-02

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 357.

Third Edition, September 2002

This edition applies to Version 1 Release 3 of z/OS™ (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

This edition replaces SC26-7414-01.

Order publications through your IBM® representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
RCF Processing, Department M86/050
5600 Cottle Road
San Jose, CA 95193-0001
United States of America

IBMLINK from US: STARPUBS at SJEVM5
IBMLINK from Canada: STARPUBS at TORIBM
IBM Mail Exchange: USIB3VVD at IBMMAIL
Internet: starpubs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1979, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . xi

Tables . xiii

About This Book . xv
Required Product Knowledge xvi
Referenced Documents . xvi
Accessing z/OS DFSMS Documents on the Internet xvii
Using LookAt to look up message explanations. xvii
Accessing Licensed Documents on the Web xviii
How to Send Your Comments xix
Notational Conventions . xix

Summary of Changes . xxiii
Summary of Changes for SC26-7414-02 z/OS Version 1 Release 3 xxiii

New Information . xxiii
Changed Information . xxiii

Summary of Changes for SC26-7414-01 z/OS Version 1 Release 3 xxiii
New Information . xxiii
Changed Information . xxiii

Chapter 1. Introduction . 1
Guide to Utility Program Functions 1
System Utility Programs . 4
Data Set Utility Programs . 5
Control . 6

Job Control Statements . 6
Utility Control Statements . 7

Special Referencing Aids . 8

Chapter 2. IEBCOMPR (Compare Data Sets) Program 11
Input and Output . 12
Control . 12

Job Control Statements. 12
Utility Control Statements . 13

IEBCOMPR Examples . 15
Example 1: Compare Data Sets that Reside on Tape 16
Example 2: Compare Sequential Data Sets that Reside on Tape 16
Example 3: Compare Sequential Data Sets Written at Different Densities 17
Example 4: Compare Sequential Data Sets—Input Stream and Tape Input 17
Example 5: Copy and Compare Sequential Data Set in Two Job Steps . . . 18
Example 6: Compare Two Partitioned Data Sets 18
Example 7: Copy and Compare Partitioned Data Set in Two Job Steps . . . 19
Example 8: Compare Two PDSEs 19

Chapter 3. IEBCOPY (Library Copy) Program 21
Converting Load Modules to Program Objects or the Reverse 21
Converting Partitioned Data Sets to PDSEs 22

Copying Data Sets . 22
Merging Data Sets . 22
Unloading (Backing up) Data Sets 23
Loading or Copying Unload Data Sets 23
Selecting Members to be Copied, Unloaded, or Loaded 25

© Copyright IBM Corp. 1979, 2002 iii

Excluding Members from a Copy Operation 25
Copying Members That Have Alias Names (COPY Statement) 26
Copying Program Objects (COPYGRP Statement) 28
Compressing a Partitioned Data Set 29
Altering Load Modules . 30
Copying and Reblocking Load Modules 31
How IEBCOPY Uses Virtual Storage for Tables and Buffers 32
Avoiding the Need to Supply Control Statements 33

Input and Output . 33
Return Codes . 34

Restrictions . 34
Control . 35

Job Control Statements. 36
Utility Control Statements . 41
Determining the IEBCOPY Operation to Be Performed 41
Scope of Operation . 41

IEBCOPY Examples . 48
Example 1: Copy an Entire Data Set 49
Example 2: Merge Four Data Sets. 50
Example 3: Copy and Replace Selected Members of a Data Set 52
Example 4: Unload and Compress a Data Set 54
Example 5: Merge Data Sets and Compress the Merged Data Set 55
Example 6: Multiple Copy Operations with One Output Data Set 57
Example 7: Multiple Copy Operations with Different Output Data Sets. . . . 61
Example 8: Loading a Data Set 66
Example 9: Unload Selected Members, Load, Copy and Merge 67
Example 10: Alter Load Modules in Place 68
Example 11: Replace a Load Module Using COPYMOD. 69
Example 12: Reblock Load Library and Distribute It to Different Device Types 70
Example 13: Convert a Partitioned Data Set to a PDSE 71
Example 14: Copy Groups from a PDSE to a PDSE 71
Example 15: Copy Groups from a PDSE to a PDSE with Replace 72
Example 16: Copy a Selected Group from a PDSE to a PDSE 72

Chapter 4. IEBDG (Test Data Generator) Program 75
Selecting a Pattern . 75

IBM-Supplied Patterns . 75
User-Specified Patterns. 76

Modifying Fields in a Record . 77
Input and Output . 78
Control . 78

Job Control Statements. 78
Utility Control Statements . 80

IEBDG Examples . 91
Example 1: Place Binary Zeros in Records Copied from Sequential Data Set 92
Example 2: Ripple 10-byte Alphabetic Pattern 93
Example 3: Create Output Records from Utility Control Statements. 93
Example 4: Use Members and Input Records as Basis of Output Member 94
Example 5: Create Records in Three Output Data Sets and Write them to

Three Partitioned Data Set Members 96
Example 6: Construct Records with Your Own Patterns 98

Chapter 5. IEBEDIT (Edit Job Stream) Program 101
Input and Output . 101
Control . 101

Job Control Statements . 102

iv z/OS V2R13.0 DFSMSdfp Utilities

Utility Control Statement . 102
IEBEDIT Examples . 104

Example 1: Copy One Job 104
Example 2: Copy Steps from Three Jobs 105
Example 3: Include Step from One Job, Exclude Step from Another 105
Example 4: Copy Statement for JOBA and JOB STEPF 106
Example 5: Copy Entire Input Data Set 106
Example 6: Copy Entire Data Set to Include New Delimiter 107

Chapter 6. IEBGENER (Sequential Copy/Generate Data Set) Program 109
Creating a Backup Copy . 109
Producing a Partitioned Data Set or PDSE from Sequential Input 109
Adding Members to a Partitioned Data Set or PDSE. 110
Producing an Edited Data Set 111
Changing Logical Record Length 112
Using IEBGENER with Double-Byte Character Set Data 113
Input and Output . 113
Control . 114

Job Control Statements . 114
Utility Control Statements 118

IEBGENER Examples . 125
Example 1: Print a Sequential Data Set 126
Example 2: Create a Partitioned Data Set from Sequential Input 126
Example 3: Convert Sequential Input into Partitioned Members. 127
Example 4: In-stream Input, Sequential Data Set to Tape Volume 128
Example 5: Produce Blocked Copy on Tape from Unblocked Disk File 128
Example 6: Edit and Copy a Sequential Input Data Set with Labels 129
Example 7: Edit and Copy a Sequential USS File to a Sequential Data Set 130
Example 8: Edit Double-Byte Character Set Data 131

Chapter 7. IEBIMAGE (Create Printer Image) Program 133
Storage Requirements for SYS1.IMAGELIB Data Set 133
Maintaining the SYS1.IMAGELIB Data Set 134

General Module Structure 135
Naming Conventions for Modules 136

Using IEBIMAGE . 136
Creating a Forms Control Buffer Module 136
Creating a Copy Modification Module 141
Creating a Character Arrangement Table Module 142
Creating a Graphic Character Modification Module 146
Creating a Library Character Set Module 148

Input and Output . 151
Control . 151

Job Control Statements . 151
Utility Control Statements 152
FCB Statement . 153
COPYMOD Statement. 157
TABLE Statement . 160
GRAPHIC Statement . 161
CHARSET Statement . 164
INCLUDE Statement . 166
NAME Statement . 167
OPTION Statement . 167

IEBIMAGE Examples . 169
Example 1: Build a New 3800 Forms Control Buffer Module 171
Example 2: Replace a 3800 Forms Control Buffer Module 171

Contents v

Example 3: Replace a 3800 Forms Control Buffer Module 172
Example 4: Build a New 3800 Forms Control Buffer Module 172
Example 5: Replace the 3800 Forms Control Buffer Module STD3 173
Example 6: Build a New 3800 Forms Control Buffer Module for Additional

ISO Paper Sizes . 174
Example 7: Build a 4248 Forms Control Buffer Module 174
Example 8: Build a New Copy Modification Module 175
Example 9: Build a New Copy Modification Module from an Existing Copy 176
Example 10: Add a New Character to a Character Arrangement Table

Module . 177
Example 11: Build a New Character Arrangement Table Module from an

Existing Copy . 178
Example 12: Build Graphic Characters in a Character Arrangement Table

Module . 178
Example 13: Delete Graphic References From a Character Arrangement

Table Module . 179
Example 14: List the World Trade National Use Graphics Graphic Character

Modification Module . 180
Example 15: Build a Graphic Character Modification Module from the

Character Modification Module World Trade GRAFMOD 180
Example 16: Build a New Graphic Character Modification Module and

Modify a Character Arrangement Table to Use It 181
Example 17: Build a Graphic Character Modification Module from Multiple

Sources . 182
Example 18: Define and Use a Character in a Graphic Character

Modification Module . 183
Example 19: List a Library Character Set Module 185
Example 20: Build a Library Character Set Module 185
Example 21: Build a Library Character Set Module and Modify a Character

Arrangement Table to Use It. 186
Example 22: Build a Library Character Set Module from Multiple Sources 187

Chapter 8. IEBISAM Program 189
Copying an ISAM Data Set . 189
Creating a Sequential Backup Copy. 189
Overriding DCB Control Information 190
Creating an ISAM Data Set from an Unloaded Data Set 191
Printing the Logical Records of an ISAM Data Set 191

Using IEBISAM User Exits 191
Input and Output . 192
Control . 193

EXEC Statement. 193
IEBISAM Examples . 194

Example 1: Copy Data Set from Two Volumes 195
Example 2: Unload an ISAM Data Set 195
Example 3: Load an Unloaded ISAM Data Set 195
Example 4: Print an ISAM Data Set 196

Chapter 9. IEBPTPCH (Print-Punch) Program 197
Printing or Punching an Entire Data Set or Selected Member 197
Printing or Punching an Edited Data Set 197
Printing or Punching Double-Byte Character Set Data 198
Printing or Punching Selected Records 198
Printing or Punching a Partitioned Directory 198
Printing or Punching to Disk or Tape 199

Input and Output . 199

vi z/OS V2R13.0 DFSMSdfp Utilities

Control . 199
Job Control Statements . 199
Utility Control Statements 201

IEBPTPCH Examples . 209
Example 1: Print Partitioned Data Set 210
Example 2: Punch Sequential Data Sets 210
Example 3: Duplicate a Card Deck 211
Example 4: Print Sequential Data Set According to Default Format 211
Example 5: Print Sequential Data Set According to User Specifications 212
Example 6: Print Three Record Groups 212
Example 7: Print a Pre-Formatted Data Set 213
Example 8: Print Directory of a Partitioned Data Set. 214
Example 9: Print Selected Records of a Partitioned Data Set 215
Example 10: Convert to Hexadecimal and Print Partitioned Data 215
Example 11: Print Member Containing DBCS Data 216

Chapter 10. IEBUPDTE (Update Data Set) Program 217
Creating and Updating Data Set Libraries 217
Modifying an Existing Data Set 217
Changing Data Set Organization 217

Input and Output . 217
Control . 218
Job Control Statements . 218
Utility Control Statements 220

IEBUPDTE Examples . 230
Example 1: Place Two Procedures in SYS1.PROCLIB 231
Example 2: Create a Three-Member Library. 231
Example 3: Create New Library Using SYS1.MACLIB as a Source 232
Example 4: Update a Library Member 233
Example 5: Create New Master Data Set and Delete Selected Records 234
Example 6: Create and Update a Library Member 234
Example 7: Insert Records into a Library Member 235
Example 8: Renumber and Insert Records into a Library Member 236
Example 9: Create a Sequential Data Set from Card Input 238
Example 10: Copy Sequential Data Set from One Volume to Another . . . 239
Example 11: Create a New Partitioned Data Set 239

Chapter 11. IEHATLAS Program 241

Chapter 12. IEHINITT (Initialize Tape) Program 243
Placing a Standard Label Set on Magnetic Tape 245
Using DFSMSrmm . 246
Input and Output . 246
Control . 247

Job Control Statements . 247
Utility Control Statement . 249

IEHINITT Examples. 251
Example 1: Write EBCDIC Labels on Three Tapes 251
Example 2: Write an ISO/ANSI Label on a Tape 252
Example 3: Place Two Groups of Serial Numbers on Six Tape Volumes 252
Example 4: Place Serial Number on Eight Tape Volumes 253
Example 5: Write EBCDIC Labels in Different Densities 253
Example 6: Write Serial Numbers on Tape Volumes at Two Densities . . . 253
Example 7: Write an ISO/ANSI Label with an Access Code 255
Example 8: Write on a tape following labeling without demounting and

remounting . 255

Contents vii

Chapter 13. IEHLIST (List System Data) Program. 257
Listing a Partitioned Data Set or PDSE Directory 257

Edited Format . 257
Unedited (Dump) Format . 258

Listing a Volume Table of Contents 259
Edited Format . 259

Input and Output . 261
Control . 261

Job Control Statements . 261
Utility Control Statements 263

IEHLIST Examples . 265
Example 1: List Partitioned Directories Using DUMP and FORMAT 265
Example 2: List Non-indexed Volume Table of Contents 266

Chapter 14. IEHMOVE (Move System Data) Program 267
Considering Volume Size Compatibility 268
Allocating Space for a Moved or Copied Data Set 269

Reblocking Data Sets . 270
Using IEHMOVE with RACF® 271

Moving or Copying a Data Set. 271
Sequential Data Sets . 272
Partitioned Data Sets . 272
BDAM Data Sets. 275
Multivolume Data Sets . 276
Unloaded Data Sets . 276
Unmovable Data Sets . 277

Moving or Copying a Group of Cataloged Data Sets. 277
Moving or Copying a Volume of Data Sets 278
Input and Output . 278
Control . 279

Job Control Statements . 279
Utility Control Statements . 283

MOVE DSNAME and COPY DSNAME Statements 284
MOVE DSGROUP and COPY DSGROUP Statements 285
MOVE PDS and COPY PDS Statements 287
MOVE VOLUME and COPY VOLUME Statements 289
INCLUDE Statement . 290
EXCLUDE Statement . 291
SELECT Statement . 292
REPLACE Statement . 292

IEHMOVE Examples . 293
Example 1: Move Sequential Data Sets from Disk Volume to Separate

Volumes . 294
Example 2: Move Partitioned Data Set to Disk Volume and Merge 294
Example 3: Move Volume of Data Sets to Disk Volume 295
Example 4: Move Partitioned Data Set to Allocated Space 295
Example 5: Move and Unload Partitioned Data Sets Volume. 296
Example 6: Unload Sequential Data Set onto Unlabeled Tape Volume . . . 296
Example 7: Load Unloaded Sequential Data Sets from Labeled Tape . . . 297
Example 8: Move Cataloged Data Set Group 297

Chapter 15. IEHPROGM (Program Maintenance) Program 299
Scratching or Renaming a Data Set or Member 299
Maintaining Data Set Passwords 300

Adding Data Set Passwords 302
Replacing Data Set Passwords 303

viii z/OS V2R13.0 DFSMSdfp Utilities

Deleting Data Set Passwords 303
Listing Password Entries . 303

Input and Output . 303
Control . 304

Job Control Statements . 304
Utility Control Statements 306

IEHPROGM Examples . 312
Example 1: Scratch Temporary System Data Sets 313
Example 2: Scratch and Uncatalog Two Data Sets 313
Example 3: Rename a Multi-Volume Data Set Catalog 313
Example 4: Uncatalog Three Data Sets 314
Example 5: Rename a Data Set and Define New Passwords 314
Example 6: List and Replace Password Information 315
Example 7: Rename a Partitioned Data Set Member 315

Chapter 16. IFHSTATR (List ESV Data) Program 317
Assessing the Quality of Tapes in a Library 317

Input and Output . 318
Control . 320
IFHSTATR Example . 320

Appendix A. Invoking Utility Programs from an Application Program 321
Building Parameter Lists . 322

Options List . 322
ddname List . 323
Page Header Parameter . 324

Return Codes . 325
IEBCOMPR Return Codes 325
IEBCOPY Return Codes . 326
IEBDG Return Codes . 326
IEBEDIT Return Codes . 326
IEBGENER Return Codes 327
IEBIMAGE Return Codes 327
IEBISAM Return Codes . 327
IEBPTPCH Return Codes 328
IEBUPDTE Return Codes 328
IEHINITT Return Codes . 328
IEHLIST Return Codes . 329
IEHMOVE Return Codes . 329
IEHPROGM Return Codes 329

Appendix B. Unload Partitioned Data Set Format. 331
Introduction. 331

Records Present in an Unload Data Set 331
Different Unload Data Set Formats 332
Detailed Record Descriptions 332

Appendix C. Specifying User Exits with Utility Programs 341
General Guidance . 341

Register Contents at Entry to Routines from Utility Programs 342
Programming Considerations 342
Returning from an Exit Routine 342
Parameters Passed to Label Processing Routines 344
Parameters Passed to Nonlabel Processing Routines 345

Processing User Labels . 345
Processing User Labels as Data Set Descriptors 345

Contents ix

Exiting to a Totaling Routine 346
Processing User Labels as Data 347

Using an Exit Routine with IEBDG 347

Appendix D. IEHLIST VTOC Listing 349
Explanation of Fields in IEHLIST Formatted VTOC Listing 350

Appendix E. Accessibility . 355
Using assistive technologies 355
Keyboard navigation of the user interface. 355

Notices . 357
Programming Interface Information 358
Trademarks. 358

Glossary . 359

Index . 367

x z/OS V2R13.0 DFSMSdfp Utilities

Figures

1. Partitioned Directories Whose Data Sets Can Be Compared Using IEBCOMPR 11
2. Partitioned Directories Whose Data Sets Cannot Be Compared Using IEBCOMPR 12
3. Copying a Partitioned Data Set—Full Copy . 50
4. Copying from Three Input Partitioned Data Sets 51
5. Selective Copy with Replace specified on the Member Level. 53
6. Compress-in-Place Following Full Copy with “Replace” Specified 56
7. Multiple Copy Operations/Copy Steps . 60
8. Multiple Copy Operations/Copy Steps within a Job Step 64
9. IEBDG Actions . 77

10. Field Selected from the Input Record for Use in the Output Record 81
11. Default Placement of Fields within an Output Record Using IEBDG 87
12. Placement of Fields with Specified Output Locations. 87
13. Placement of Fields with Only Some Output Locations Specified 88
14. Creating Output Records with Utility Control Statements 88
15. Output Records at Job Step Completion . 94
16. Output Partitioned Member at Job Step Completion 95
17. Partitioned Data Set Members at Job Step Completion 97
18. Contents of Output Records at Job Step Completion. 98
19. Creating a Partitioned Data Set or PDSE from Sequential Input Using IEBGENER 110
20. Adding Members to a Partitioned Data Set or PDSE Using IEBGENER 111
21. Editing a Sequential Data Set Using IEBGENER. 112
22. How a Sequential Data Set is Edited and Copied 131
23. 3800 General Module Header . 136
24. 3800 FCB Module Structure . 137
25. 4248 FCB Module Structure . 138
26. 4248 FCB Module Control Byte . 138
27. 4248 FCB Module Data Byte . 139
28. IEBIMAGE Listing of a Forms Control Buffer Module 140
29. Copy Modification Module Structure . 141
30. IEBIMAGE Listing of Three Segments of a Copy Modification Module 142
31. Character Arrangement Table Module Structure 143
32. Graphic Character Modification Modules. 144
33. IEBIMAGE Listing of a Character Arrangement Table Module 145
34. 3800 Graphic Character Modification Module Structure for One Character 147
35. IEBIMAGE Listing of Two Segments of a Graphic Character Modification Module. 148
36. 3800 Model 3 Library Character Set Module Structure for One Character 149
37. IEBIMAGE Listing of Two Segments of a Library Character Set 150
38. An Unloaded Data Set Created Using IEBISAM 191
39. Record Heading Buffer Used by IEBISAM . 192
40. IBM Standard Label Group after Volume Receives Data 245
41. Printout of INITT Statement Specifications and Initial Volume Label Information 249
42. Sample of an Edited Partitioned Directory Entry 258
43. Format of an Unedited Listing of a Partitioned Data Set or PDSE Directory 259
44. Partitioned Data Set Before and After an IEHMOVE Copy Operation 273
45. Merging Two Data Sets Using IEHMOVE . 274
46. Merging Three Data Sets Using IEHMOVE . 275
47. Relationship between the Protection Status of a Data Set and Its Passwords 301
48. Listing of a Password Entry . 303
49. SMF Type 21 (ESV) Record Format . 317
50. Sample Output from IFHSTATR . 319
51. Directory Record Layout. 335
52. Attribute Record Layout . 336
53. Note List Record Layout. 337

© Copyright IBM Corp. 1979, 2002 xi

54. Member Data Record Layout . 338
55. Member Data Block Layout . 338
56. End-of-File Block Layout . 339
57. System Action at OPEN, EOV, or CLOSE Time 346
58. User Totaling Routine Return Codes . 347
59. IEBDG User Exit Return Codes . 348
60. IEHLIST Sample Output—VTOC (for extended format sequential data sets). 349
61. IEHLIST Sample Output—VTOC (for sequential, partitioned data sets and PDSEs) 350

xii z/OS V2R13.0 DFSMSdfp Utilities

Tables

1. Tasks and Utility Programs. 1
2. System Utility Programs. 5
3. Data Set Utility Programs . 5
4. Example Directory . 9
5. Job Control Statements for IEBCOMPR . 12
6. IEBCOMPR Utility Control Statements . 13
7. Syntax of LABEL statement . 15
8. IEBCOMPR Example Directory . 15
9. Job Control Statements for IEBCOPY . 36

10. IEBCOPY Utility Control Statements. 41
11. Multiple Copy Operations within a Job Step . 42
12. IEBCOPY Example Directory . 48
13. IBM-Supplied Test Data Patterns . 75
14. Job Control Statements for IEBDG . 78
15. Syntax of EXEC statement . 79
16. IEBDG Utility Control Statements . 80
17. Compatible IEBDG Operations . 85
18. IEBDG Example Directory . 91
19. Job Control Statements for IEBEDIT . 102
20. IEBEDIT Example Directory . 104
21. Job Control Statements for IEBGENER . 114
22. Effect of Output DD Statements . 117
23. IEBGENER Utility Control Statements. 118
24. IEBGENER Example Directory . 125
25. Members per track (T) for various devices . 134
26. Job Control Statements for IEBIMAGE . 151
27. Utility Control Statements for IEBIMAGE. 152
28. IEBIMAGE Listing of a Copy Modification Module with Overrun Notes 169
29. IEBIMAGE Example Directory . 169
30. IEBISAM User Exit Return Codes . 192
31. Job Control Statements for IEBISAM . 193
32. IEBISAM Example Directory . 194
33. Job Control Statements for IEBPTPCH . 199
34. IEBPTPCH Utility Control Statements . 201
35. IEBPTPCH Example Directory . 210
36. Job Control Statements for IEBUPDTE . 218
37. IEBUPDTE Utility Control Statements . 220
38. NEW, MEMBER and NAME Parameters of the Function Statements 225
39. IEBUPDTE Example Directory . 230
40. Example of Reordered Sequence Numbers . 236
41. Reordered Sequence Numbers . 238
42. IEHINITT Job Control Statements . 247
43. IEHINITT Example Directory . 251
44. IEHLIST Job Control Statements . 261
45. IEHLIST Utility Control Statements . 263
46. IEHLIST Example Directory . 265
47. Move and Copy Operations—DASD Receiving Volume with Size Compatible with Source Volume 268
48. Move and Copy Operations—DASD Receiving Volume with Size Incompatible with Source

Volume . 268
49. Move and Copy Operations—Non-DASD Receiving Volume 269
50. Moving and Copying Sequential Data Sets . 272
51. Moving and Copying Partitioned Data Sets . 272
52. Moving and Copying a Group of Cataloged Data Sets. 277

© Copyright IBM Corp. 1979, 2002 xiii

53. Moving and Copying a Volume of Data Sets . 278
54. IEHMOVE Job Control Statements . 279
55. IEHMOVE Utility Control Statements . 283
56. IEHMOVE Example Directory . 293
57. IEHPROGM Job Control Statements . 304
58. IEHPROGM Utility Control Statements . 306
59. IEHPROGM Example Directory . 312
60. IFHSTATR Job Control Statements. 320
61. Contents of the COPYR1 Descriptor Record . 333
62. Contents of the COPYR2 Descriptor Record . 334
63. User-Exit Routines Specified with Utilities . 341
64. Return Codes That Must Be Issued by User Exit Routines 343
65. Parameter Lists for Nonlabel Processing Exit Routines 345

xiv z/OS V2R13.0 DFSMSdfp Utilities

About This Book

This book is intended to help system and application programmers use the z/OS™

DFSMS utility programs to manipulate system and user data and data sets. Most
programs are discussed according to the following pattern:

1. Introduction and description of the functions that can be performed by the
program. This description typically includes an overview of the program’s use,
definitions of terms, and illustrations.

2. Functions that are supported by the utility and the purpose of each function.

3. Input and output that are used and produced by the program.

4. Control of the program through job and utility control statements. Job control
statements are described only insofar as their use in the utility program is
peculiar to that program. Utility control statements are discussed fully.

5. Examples of using the program, including the job and utility control statements.

Use of the following utilities is not recommended:

v ICAPRTBL—The 3211 printer is no longer supported.

v IEBISAM—VSAM is recommended. For information on converting ISAM data
sets to VSAM key-sequenced data sets, see z/OS DFSMS: Using Data Sets and
the REPRO command in z/OS DFSMS Access Method Services.

v IEHMOVE—DFSMSdss™ and IEBCOPY are recommended.

v IEHPROGM—IDCAMS is recommended for all catalog and delete functions.

v IEHATLAS—The IEHATLAS program is no longer distributed. Use Device
Support Facilities (ICKDSF) instead.

The information about these utilities is provided for compatibility only.

Several specialized utilities are not discussed in this book. The following list shows
their names and functions, and indicates which book contains their explanation.

Utility Function Reference

IDCAMS Allows users to define, manipulate,
or delete VSAM data sets, define
and manipulate integrated catalog
facility catalogs, and copy, print, or
convert SAM and ISAM data sets
to VSAM data sets.

z/OS DFSMS Access Method Services, SC26-7394

Device Support
Facilities
(ICKDSF)

Used for the initialization and
maintenance of DASD volumes.

Device Support Facilities User’s Guide and Reference ,
GC35-0033

DFSMSdss DASD utility functions such as
dump/restore and reduction of free
space fragmentation.

z/OS DFSMSdss Storage Administration Guide, SC35-0423
z/OS DFSMSdss Storage Administration Reference,
SC35-0424

Offline IBM®

3800 Utility
(CIPOPS)

Printer library function, used with
the IBM 3800 Tape-to-Printing
Subsystem Feature.

Offline IBM 3800 Utility , SH20-9138

IEFBR14 Performs no action other than give
return code 0 but the job
scheduler checks JCL statements
for syntax errors, allocates space
for data sets and performs
disposition processing.

z/OS MVS JCL User’s Guide, SA22-7598

© Copyright IBM Corp. 1979, 2002 xv

Utility Function Reference

AMASPZAP
(super zap)

Used to inspect and modify disk
data sets.

z/OS MVS Programming: Assembler Services Reference
ABE-HSP, SA22-7606

IPCS, interactive
program control
system

For diagnosis, analysis, and
printing of system and application
problems by using system dumps
and GTF tracing.

z/OS MVS IPCS User’s Guide, SA22-7596

EDGINERS Write IBM and ISO/ANSI standard
labels on magnetic tape volumes
and automatic erasure and
labelling of magnetic tapes.

z/OS DFSMSrmm Implementation and Customization Guide,
SC26-7405

SuperC Compare and report on differences
between data set contens.

HLASM Toolkit Feature User’s Guide, GC26-8710 z/OS ISPF
User’s Guide, SC34-4822

Required Product Knowledge
To use this book effectively, you should be familiar with:
v Appplications that use tape at your installation
v DFSMS
v Method of allocation in MVS™

v Job control language (JCL)
v Data management
v System management facilities (SMF)
v Tape and DASD hardware
v Tape mount management

You should also be familiar with the information presented in the following
referenced publications:

Referenced Documents
Some publications from the OS/390™ obsolete library may be useful. z/OS MVS
Diagnosis: Reference, GA22-7588, contains a complete list of the MVS/ESA™

System Product Version 4 publications, and identifies any publications that are new
or that replace publications in the previous version.

The following publications are referenced in this book:

Publication Title Order Number

z/OS MVS Programming: Authorized Assembler Services Guide SA22-7608

z/OS MVS Programming: Assembler Services Reference ABE-HSP SA22-7606

IBM 3800 Printing Subsystem Programmer’s Guide GC26-3846

IBM 3800 Printing Subsystem Model 3 Programmer’s Guide:
Compatibility

SH35-0051

z/OS MVS JCL Reference SA22-7597

z/OS MVS JCL User’s Guide SA22-7598

z/OS DFSMS Access Method Services SC26-7394

z/OS DFSMS Installation Exits SC26-7396

z/OS DFSMS Program Management SC27-1130

z/OS DFSMS Macro Instructions for Data Sets SC26-7408

xvi z/OS V2R13.0 DFSMSdfp Utilities

Publication Title Order Number

z/OS DFSMS: Managing Catalogs SC26-7409

z/OS DFSMSdfp Storage Administration Reference SC26-7402

z/OS DFSMSdfp Advanced Services SC26-7400

z/OS DFSMS: Using Data Sets SC26-7410

z/OS DFSMS: Using Magnetic Tapes SC26-7412

Reference Manual for the IBM 3800 Printing Subsystem Model 1 GA26-1635

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

z/OS TSO/E Programming Services SA22-7789

z/OS MVS Programming: Assembler Services Guide SA22-7605

z/OS MVS System Messages, Vol 7 (IEB-IEE) (IEB-IEE) SA22-7637

z/OS MVS System Messages, Vol 8 (IEF-IGD) (IEF-IGD) SA22-7638

Accessing z/OS DFSMS Documents on the Internet
In addition to making softcopy documents available on CD-ROM, IBM provides
access to unlicensed z/OS softcopy documents on the Internet. To find z/OS
documents on the Internet, first go to the z/OS home page:
http://www.ibm.com/servers/eserver/zseries/zos

From this Web site, you can link directly to the z/OS softcopy documents by
selecting the Library icon. You can also link to IBM Direct to order hardcopy
documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages, system abends, and some codes. Using LookAt to find information is
faster than a conventional search because in most cases LookAt goes directly to
the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

or from anywhere in z/OS where you can access a TSO command line (for
example, TSO prompt, ISPF, z/OS UNIX System Services running OMVS).

To find a message explanation on the Internet, go to the LookAt Web site and
simply enter the message identifier (for example, IAT1836 or IAT*). You can select a
specific release to narrow your search. You can also download code from the z/OS
Collection, SK3T-4269 and the LookAt Web site so you can access LookAt from a
PalmPilot (Palm VIIx suggested).

To use LookAt as a TSO command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO from a disk on your z/OS
Collection, SK3T-4269 or from the LookAt Web site. To obtain the code from the
LookAt Web site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html.

2. Click the News button.

3. Scroll to Download LookAt Code for TSO and VM.

About This Book xvii

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

4. Click the ftp link, which will take you to a list of operating systems. Select the
appropriate operating system. Then select the appropriate release.

5. Find the lookat.me file and follow its detailed instructions.

To find a message explanation from a TSO command line, simply enter: lookat
message-id. LookAt will display the message explanation for the message
requested.

Note: Some messages have information in more than one document. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
document to open.

Accessing Licensed Documents on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link Web userid and password, and a
key code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Log on to Resource Link using your Resource Link user ID and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed, you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

To access the licensed documents:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS.

6. Access the licensed document by selecting the appropriate element.

xviii z/OS V2R13.0 DFSMSdfp Utilities

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments about this book or any other DFSMS
documentation:

v Send your comments by e-mail to:

– IBMLink™ from US: starpubs@us.ibm.com

– IBMLink from Canada: STARPUBS at TORIBM

– IBM Mail Exchange: USIB3VVD at IBMMAIL

– Internet: starpubs@us.ibm.com

Be sure to include the name of the book, the part number of the book, version
and product name, and if applicable, the specific location of the text you are
commenting on (for example, a page number or a table number).

v Fill out one of the forms at the back of this book and return it by mail or by giving
it to an IBM representative. If the form has been removed, address your
comments to IBM Corporation, RCF Processing Department M86/050, 5600
Cottle Road, San Jose, California 95193-0001, U.S.A.

Notational Conventions
A uniform notation describes the syntax of utility control statements. This notation is
not part of the language; it is merely a way of describing the syntax of the
statements. The statement syntax definitions in this book use the following
conventions:

[] Brackets enclose an optional entry. You may, but need not, include the
entry. Examples are:

[length]
[MF=E]

| An OR sign (a vertical bar) separates alternative entries. You must specify
one, and only one, of the entries unless you allow an indicated default.
Examples are:

[REREAD|LEAVE]
[length|'S']

{ } Braces enclose alternative entries. You must use one, and only one, of the
entries. Examples are:

BFTEK={S|A}
{K|D}
{address|S|O}

Sometimes alternative entries are shown in a vertical stack of braces. An
example is:

MACRF={{(R[C|P])}{(W[C|P|L])} {(R[C],W[C])}}

In the example above, you must choose only one entry from the vertical
stack.

. . . An ellipsis indicates that the entry immediately preceding the ellipsis may
be repeated. For example:

(dcbaddr,[(options)],. . .)

About This Book xix

‘ ’ A ‘ ’ indicates that a blank (an empty space) must be present before the
next parameter.

UPPERCASE BOLDFACE
Uppercase boldface type indicates entries that you must code exactly as
shown. These entries consist of keywords and the following punctuation
symbols: commas, parentheses, and equal signs. Examples are:
v CLOSE , , , ,TYPE=T
v MACRF=(PL,PTC)

UNDERSCORED UPPERCASE BOLDFACE
Underscored uppercase boldface type indicates the default used if you do
not specify any of the alternatives. Examples are:
v [EROPT={ACC|SKP|ABE}]
v [BFALN={F|D}]

Lowercase Italic
Lowercase italic type indicates a value to be supplied by you, the user,
usually according to specifications and limits described for each parameter.
Examples are:
v number
v image-id
v count

keyword=device=list
The term keyword is replaced by VOL, FROM or TO.

The term device is replaced by a generic name, for example, 3380, or an
esoteric name, for example, SYSDA.

For DASD, the term list is replaced by one or more volume serial numbers
separated by commas. When there is more than one volume serial number,
the entire list field must be enclosed in parentheses.

For tapes, the term list is replaced by either one or more “volume serial
number, data set sequence number” pairs. Each pair is separated from the
next pair by a comma. When there is more than one pair, the entire list field
must be enclosed in parentheses; for example:
FROM=3480=(tapeA,1,tapeB,1).

REQUIRED KEYWORDS AND SYMBOLS
Entries shown IN THE FORMAT SHOWN HERE (notice the type of
highlighting just used) must be coded exactly as shown. These entries
consist of keywords and the following punctuation symbols: commas,
parentheses, and equal signs. Examples are:
v CLOSE , , , ,TYPE=T
v MACRF=(PL,PTC)

Note: The format (the type of highlighting) that is used to identify this type
of entry depends on the display device used to view a softcopy
book. The published hardcopy version of this book displays this type
of entry in uppercase boldface type.

DEFAULT VALUES
Values shown IN THE FORMAT SHOWN HERE (notice the type of
highlighting just used) indicate the default used if you do not specify any of
the alternatives. Examples are:
v [EROPT={ACC|SKP|ABE}]
v [BFALN={F|D}]

xx z/OS V2R13.0 DFSMSdfp Utilities

Note: The format (the type of highlighting) that is used to identify this type
of entry depends on the display device used to view a softcopy
book. The published hardcopy version of this book displays this type
of value in underscored uppercase boldface type.

User Specified Value
Values shown in the format shown here (notice the type of highlighting just
used) indicate a value to be supplied by you, the user, usually according to
specifications and limits described for each parameter. Examples are:
v number
v image-id
v count

Note: The format (the type of highlighting) that is used to identify this type
of entry depends on the display device used to view a softcopy
book. The published hardcopy version of this book displays this type
of value in lowercase italic type.

About This Book xxi

xxii z/OS V2R13.0 DFSMSdfp Utilities

Summary of Changes

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

You may notice changes in the style and structure of some content in this book—for
example, headings that use uppercase for the first letter of initial words only or
procedures that have a different look and format. The changes are ongoing
improvements to the consistency and retrievability of information in our books.

Summary of Changes for SC26-7414-02 z/OS Version 1 Release 3
This book contains information that was previously presented in z/OS Version 1
Release 1 DFSMSdfp Utilities (SC26-7414-01).

The following sections summarize the changes to that information.

New Information
This edition includes the following new information:

v “Chapter 12, IEHINITT“ suggests a method of ensuring that only authorized users
use the IEHINITT program. An example of a sequence of commands for this
method is provided.

v This section also explains that you can use installation exits to review
initialization requests and determine if a volume should be initialized.

Changed Information
This edition includes various maintenance and improvement changes.

Summary of Changes for SC26-7414-01 z/OS Version 1 Release 3
This book contains information that was previously presented in z/OS Version 1
Release 1 DFSMSdfp Utilities (SC26-7414-00).

The following sections summarize the changes to that information.

New Information
This edition includes the following new information: Table 22 on page 117 shows the
effect of the availability of RECFM, LRECL, and BLKSIZE in the SYSUT2 DD
statement.

Changed Information
The following information was changed in this edition: “Chapter 6, IEBGENER”
clarifies how the default block size value is set for the system-determined block size
(SDB) parameter.

© Copyright IBM Corp. 1979, 2002 xxiii

xxiv z/OS V2R13.0 DFSMSdfp Utilities

Chapter 1. Introduction

DFSMS provides utility programs to assist you in organizing and maintaining data.
Utilities are simple programs that perform commonly needed functions. “Guide to
Utility Program Functions” will help you find the program that performs the function
that you need.

Guide to Utility Program Functions
You can use the DFSMS utility programs to perform a variety of tasks, as shown in
Table 1. The “Task” column shows tasks that you may want to perform. The
“Options” column more specifically defines the tasks. The “Primary Utility” column
identifies the utility that is especially suited for the task. The “Secondary Utilities”
column identifies other utilities that can be used to perform the task.

Table 1. Tasks and Utility Programs

Task Options Primary Utility Secondary Utilities

Add a member to a partitioned data set IEBUPDATE,
IEBGENER

IEBDG

a password IEHPROGM

Alter in place a load module IEBCOPY

Catalog a data set in a catalog IEHPROGM

Change data set organization IEBUPDTE IEBGENER,
IEBPTPCH

logical record length IEBGENER

Compare UNIX system services (USS) files such as HFS files IEBCOMPR

partitioned data sets IEBCOMPR

sequential data sets IEBCOMPR

PDSEs IEBCOMPR

Compress a partitioned data set IEBCOPY

Compress in
place

a partitioned data set IEBCOPY

Convert to
partitioned data
set

an unloaded PDSE containing program objects cannot
be loaded into a PDS. An unloaded PDSE containing
data objects can be loaded into a PDS but all extended
attributes will be lost.

IEBCOPY

sequential data sets IEBGENER IEBUPDTE

a PDSE IEBCOPY

Convert to
PDSE

a partitioned data set IEBCOPY

an unloaded copy of a partitioned data set or PDSE IEBCOPY

sequential data sets IEBGENER IEBUPDTE

Convert to
sequential data
set

a partitioned data set or PDSE IEBGENER IEBUPDTE

an indexed sequential data set IEBDG IEBISAM

© Copyright IBM Corp. 1979, 2002 1

Table 1. Tasks and Utility Programs (continued)

Task Options Primary Utility Secondary Utilities

Copy a load module or load module library IEBCOPY

a partitioned data set IEBCOPY IEHMOVE

a volume of data sets (on tape or disk) IEHMOVE

an indexed sequential data set IEBISAM

job steps IEBEDIT

selected members of a partitioned data set IEBCOPY IEHMOVE

sequential data sets IEBGENER IEHMOVE,
IEBUPDTE,
IEBPTPCH

a PDSE IEBCOPY

a group of PDSE members IEBCOPY

selected members of a PDSE IEBCOPY

Create a backup copy of a partitioned data set or PDSE IEBCOPY

a character arrangement table module IEBIMAGE

a copy modification module IEBIMAGE

a 3800 or 4248 forms control buffer module IEBIMAGE

a graphic character modification module IEBIMAGE

a library character set module IEBIMAGE

a library of partitioned members IEBGENER IEBUPDTE

a member of a partitioned data set or PDSE IEBGENER IEBDG, IEBUPDTE

a sequential output data set IEBDG IEBGENER,
IEBPTPCH

an indexed sequential data set IEBDG

an output job stream IEBEDIT

Delete a data set or member of a partitioned data set IEHPROGM

password IEHPROGM

catalog entries IEHPROGM

records in a partitioned data set or PDSE member IEBUPDTE

Edit and convert
to partitioned
data set or
PDSE

a sequential data set IEBGENER IEBUPDTE

Edit and copy a job stream IEBEDIT

a sequential data set IEBGENER IEBUPDTE,
IEBPTPCH

Edit and list error statistics by volume (ESV) records IFHSTATR

Edit and print a sequential data set IEBPTPCH IEBGENER

Edit and punch a sequential data set IEBPTPCH IEBGENER

Enter a procedure into a procedure library IEBUPDTE

Exclude a partitioned data set member from a copy operation IEBCOPY IEHMOVE

a PDSE member from a copy operation IEBCOPY

2 z/OS V2R13.0 DFSMSdfp Utilities

Table 1. Tasks and Utility Programs (continued)

Task Options Primary Utility Secondary Utilities

Expand a partitioned data set or PDSE IEBCOPY

a sequential data set IEBGENER

Generate test data IEBDG

Include changes to members or sequential data sets IEBUPDTE

a partitioned data set member from a copy operation IEBCOPY IEHMOVE

a PDSE member from a copy operation IEBCOPY

Indicate double-byte character set string by supplying enclosing
shift-out/shift-in characters

IEBGENER IEBPTPCH

Insert records into a partitioned data set or PDSE IEBUPDTE

Label magnetic tape volumes IEHINITT

List a password entry IEHPROGM

a volume table of contents IEHLIST

number of unused directory blocks and tracks IEHLIST IEBCOPY

partitioned data set or PDSE directories IEHLIST IEHPROGM

CVOL entries IEHLIST

Load an unloaded partitioned data set to a partitioned data
set

IEBCOPY

an indexed sequential data set IEBISAM

an unloaded data set IEHMOVE

an unloaded partitioned data set to a PDSE (for
non-load modules only)

IEBCOPY

an unloaded PDSE to a partitioned data set (for
non-load modules only)

IEBCOPY

an unloaded PDSE to a PDSE IEBCOPY

Merge partitioned data sets IEBCOPY IEHMOVE

PDSEs IEBCOPY

partitioned data sets and PDSEs IEBCOPY

Modify a partitioned or sequential data set, or a PDSE IEBUPDTE

Move a volume of data sets IEHMOVE

partitioned data sets IEHMOVE

sequential data sets IEHMOVE

Number records in a new or old member of a partitioned data set or
PDSE

IEBUPDTE

Password
protection

add a password IEHPROGM

delete a password IEHPROGM

list passwords IEHPROGM

replace a password IEHPROGM

Chapter 1. Introduction 3

Table 1. Tasks and Utility Programs (continued)

Task Options Primary Utility Secondary Utilities

Print sequential data sets IEBPTPCH IEBGENER,
IEBUPDTE

partitioned data sets or PDSEs IEBPTPCH

selected records IEBPTPCH

mixed strings of double-byte and single-byte character
set data

IEBPTPCH IEBGENER

double-byte character set data IEBPTPCH IEBGENER

Punch a partitioned data set member IEBPTPCH

a sequential data set IEBPTPCH

selected records IEBPTPCH

mixed strings of double-byte and single-byte character
set data

IEBPTPCH IEBGENER

Double-byte character set data IEBPTPCH IEBGENER

Reblock a load module IEBCOPY

a partitioned data set or PDSE IEBCOPY

a sequential data set IEBGENER IEBUPDTE

Re-create a partitioned data set or PDSE IEBCOPY

Rename member of a partitioned data set or PDSE IEBCOPY IEHPROGM

a sequential or partitioned data set, or PDSE IEHPROGM

moved or copied members of a partitioned data set IEHMOVE

Renumber logical records IEBUPDTE

Remove indication of a double-byte character set string by
stripping off enclosing shift-out/shift-in characters

IEBGENER

Replace a password IEHPROGM

logical records IEBUPDTE

records in a member of a partitioned data set or PDSE IEBUPDTE

selected members of a PDSE IEBCOPY IEBUPDTE

selected members of a partitioned data set IEBCOPY IEBUPDTE,
IEHMOVE

Scratch data sets IEHPROGM

Uncatalog data sets IEHPROGM

Unload a partitioned data set IEBCOPY IEHMOVE

a sequential data set IEHMOVE

an indexed sequential data set IEBISAM

a PDSE IEBCOPY

Update in place a partitioned data set or PDSE IEBUPDTE

System Utility Programs
System utility programs are used to list or change information that is related to data
sets and volumes, such as data set names, catalog entries, and volume labels.
Most functions that system utility programs can perform are performed more
efficiently with other programs, such as IDCAMS, ISMF, or DFSMSrmm.

4 z/OS V2R13.0 DFSMSdfp Utilities

Table 2 is a list of system utility programs and their purpose.

Table 2. System Utility Programs

System Utility Alternate
Program

Purpose

*IEHINITT DFSMSrmm
EDGINERS

To write standard labels on tape volumes

IEHLIST ISMF, PDF 3.4 To list system control data

*IEHMOVE DFSMSdss,
IEBCOPY

To move or copy collections of data

IEHPROGM Access method
services, PDF 3.2

To build and maintain system control data

*IFHSTATR DFSMSrmm,
EREP

To select, format, and write information about tape
errors from the IFASMFDP tape

*These programs provide functions that are better performed by newer applications,
such as ISMF or DFSMSrmm or DFSMSdss. IBM continues to ship these programs
for compatibility with the supported older system levels.

Data Set Utility Programs
You can use data set utility programs to reorganize, change, or compare data at the
data set or record level. These programs are controlled by JCL statements and
utility control statements.

These utilities allow you to manipulate partitioned, sequential or indexed sequential
data sets, or partitioned data sets extended (PDSEs), which are provided as input
to the programs. You can manipulate data ranging from fields within a logical record
to entire data sets.

The data set utilities included in this manual cannot be used with VSAM data sets.
Information about VSAM data sets can be found in z/OS DFSMS: Using Data Sets .

Table 3 is a list of data set utility programs and their use.

Table 3. Data Set Utility Programs

Data Set Utility Use

*IEBCOMPR, SuperC, (PDF 3.12) Compare records in sequential or partitioned data sets,
or PDSEs

IEBCOPY Copy, compress, or merge partitioned data sets or
PDSEs; add RLD count information to load modules;
select or exclude specified members in a copy
operation; rename or replace selected members of
partitioned data sets or PDSEs

IEBDG Create a test data set consisting of patterned data

IEBEDIT Selectively copy job steps and their associated JOB
statements

IEBGENER or ICEGENER Copy records from a sequential data set or convert a
data set from sequential organization to partitioned
organization

Chapter 1. Introduction 5

Table 3. Data Set Utility Programs (continued)

Data Set Utility Use

IEBIMAGE Modify, print, or link modules for use with the IBM
3800 Printing Subsystem, the IBM 3262 Model 5, or
the 4248 printer

*IEBISAM Unload, load, copy, or print an ISAM data set

IEBPTPCH or PDF 3.1 or 3.6 Print or punch records in a sequential or partitioned
data set

IEBUPDTE Incorporate changes to sequential or partitioned data
sets, or PDSEs

*These programs provide functions that are better performed by newer applications,
such as ISMF or DFSMSrmm or DFSMSdss. IBM continues to ship these programs
for compatibility with the supported older system levels.

Control
System and data set utility programs are controlled by job control and utility control
statements. The job control and utility control statements necessary to use utility
programs are provided in the major discussion of each utility program.

Job Control Statements
You can start a system or data set utility program in the following ways:

v Place job control statements in a file and give the file to JES to run, for example,
by the TSO SUBMIT command.

v Place job control statements, placed in a procedure library and run them with the
MVS™ operator START command or include them in a JOB with the EXEC job
control statement.

v Use TSO CALL command.

v Use another program which uses the CALL, LINK, or ATTACH macro.

Most JCL examples shown in this book specify parameters used in locating
uncataloged data sets. With cataloged data sets, the UNIT and VOL=SER
parameters are not necessary. See z/OS DFSMS: Using Data Sets for more details
on allocating SMS-managed data sets which can be used with the utilities described
in this manual.

See z/OS MVS JCL Reference for more information on coding JCL statements.

Sharing Data Sets
Except for VSAM data sets or PDSEs, a data set cannot be updated by more than
one job or user at a time without the risk of damaging the data set. Some data sets,
particularly system data sets (identified by “SYS1”), are always in use. In order to
safely update shared data sets, all but one user must stop updating the data set.
After the update is finished, all users will have to re-access the data set.
Re-accessing the data set is a function of the program using the data set and may
involve closing and reopening the data set, or even freeing and reallocating the
data set. Not all programs may be capable of doing this, so it is not always possible
to safely update a shared data set.Unfortunately, this serialization mechanism does
distinguish between data sets with the same name on different volumes.

6 z/OS V2R13.0 DFSMSdfp Utilities

You can use the DISP parameter on the DD statement, or the TSO ALLOCATE
command, or the equivalent text unit for dynamic allocation (SVC 99) to put a lock
on a data set so that you can update the data set. Specify DISP=OLD or
DISP=MOD whenever you update a data set other than a PDSE.

If you code DISP=SHR in your JCL or the equivalent on the TSO ALLOCATE
command or dynamic allocation, realize that the data set you are updating may be
simultaneously updated by another user, resulting in an unusable data set, unless it
is a PDSE. Another exception is a PDS. If a second program within the GRSplex
tries to open the shared PDS for output (not the update in place option), that
program gets a 213 ABEND. This detection of a violation of sharing protocol works
even with two data sets with the same name on different volumes or two data sets
with the same name and volume serial but on different systems. For these two
cases the system does not issue ABEND 213.

This problem has been addressed by some components such as program
management (binder, linkage editor), MVS allocation (JCL, SVC 99) and ISPF/PDF.
Each component provides its own separate interlock and none of them recognize all
the other interlocks. Therefore there is no totally safe way to update a data set
allocation with DISP=SHR.

Partitioned data sets further complicate sharing because they have a directory and
individual members. These sub-parts are generally protected inside the system
ISPF/PDF does provide good protection against changes to members and the
directory made by other ISPF/PDF user).

PDSE (partitioned data sets extended) are designed to avoid sharing problems.
Consider using them in place of partitioned data sets.

When a volume is shared between unlike operating systems (such as between an
MVS system and a VM system with shared DASD), DD statements or TSO ALLOC
commands may not be able to stop a volume from being simultaneously updated
from the two different systems. For further information about sharing data sets see
z/OS DFSMS: Using Data Sets.

Utility Control Statements
Utility control statements are used to identify a particular function to be performed
by a utility program and, when required, to identify specific volumes or data sets to
be processed. The utility control statements that a particular utility uses are
discussed in the chapter for that utility.

Utility control statements are usually included in the input stream. However, they
may also be placed in a sequential data set, in a member of a partitioned data set
or PDSE, or in a UNIX system services (USS) file such as a HFS file.. In any case,
the data set must have fixed or fixed blocked records with a logical record length of
80. For a USS file, the records can have various lengths; code FILEDATA=TEXT on
the DD statement.

Exception: Some utilities allow exceptions to these rules.

The control statements for the utility programs have the following standard format:
label operation operand comments

The label symbolically identifies the control statement and, with the exception of
system utility program IEHINITT, can be omitted. When included, a name must

Chapter 1. Introduction 7

begin in the first position of the statement and must be followed by one or more
blanks. The label can contain from 1 to 8 alphanumeric characters. IEBUPDTE
control statements are an exception to this rule. They begin with “./” in positions 1
and 2, with an optional label beginning in position 3.

The operation identifies the type of control statement. It must be preceded and
followed by one or more blanks.

The operand is made up of one or more keyword parameters, separated by
commas. The operand field must be preceded and followed by one or more blanks.
Commas, parentheses, and blanks can be used only as delimiting characters.

Comments can be written in a utility statement, but they must be separated from
the last parameter of the operand field by one or more blanks.

Continuing Utility Control Statements
Utility control statements are contained in columns 1 through 71. A statement that
exceeds 71 characters must be continued on one or more additional records. A
nonblank character must be placed in column 72 to indicate continuation.

Exception: Some utilities allow exceptions to this rule. In those cases, a utility
statement can be interrupted either in column 71 or after any comma.

The continued portion of the utility control statement must begin in column 16 of the
following record.

Exception: The IEBPTPCH and IEBGENER utility programs permit certain
exceptions to these requirements (see the applicable program description).

Restrictions
v Utility control statements do not support temporary data set names that begin

with an ampersand. You can code the complete name generated for the data set
by the system (for example,
DSNAME=SYS95296.T000051.RP001.JOBTEMP.TEMPMOD). For utilities where
you identify data sets only on DD statements or the dynamic allocation
equivalent, you can use a temporary data set name that begins with an
ampersand.

v The utility programs described in this book do not normally support VSAM data
sets. For certain exceptions, refer to the various program descriptions.

v You identify ASCII tape data sets with LABEL=(,AL) or OPTCD=Q.

The utilities that read or write binary (non-text) data on tape do not support ASCII
tapes. This is because ASCII tapes require all data to be text. See z/OS DFSMS:
Using Data Sets. The utilities that do not support ASCII tapes include IEBCOPY,
IEBISAM, IEHMOVE, and IFHSTATR.

Special Referencing Aids
To help you locate the correct utility program for your needs and locate the correct
example of the program for reference, two special referencing aids are included in
this publication.

To locate the correct utility program, refer to Table 1 on page 1 under Guide to
Utility Program Functions.

8 z/OS V2R13.0 DFSMSdfp Utilities

To locate the correct example, use the figure (called an “example directory”) that
precedes each program’s examples. Table 4 shows a portion of the example
directory for IEBCOPY. The figure shows that IEBCOPY Example 1 is an example
of copying a partitioned data set from one disk volume to another and that
IEBCOPY Example 2 is an example of copying from three input partitioned data
sets to an existing output partitioned data set.

Table 4. Example Directory

Operation Device Comments Example

COPY Disk Full Copy. The input and output data sets are
partitioned.

1

COPY Disk Multiple input partitioned data sets. Fixed-blocked
and fixed-record formats.

2

Chapter 1. Introduction 9

10 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 2. IEBCOMPR (Compare Data Sets) Program

Recommendation: Use the SuperC utility instead of IEBCOMPR. SuperC is part of
ISPF/PDF and the High Level Assembler Toolkit Feature. SuperC can be processed
in the foreground as well as in batch and its report is more useful.

IEBCOMPR is a data set utility that is used to compare two sequential data sets,
two partitioned data sets or two partisioned data sets (PDSEs) at the logical record
level to verify a backup copy. Fixed, variable, or undefined records from blocked or
unblocked data sets or members can also be compared. However, you should not
use IEBCOMPR to compare load modules.

Two sequential data sets are considered equal, that is, are considered to be
identical under the following conditions:
v The data sets contain the same number of records.
v Corresponding records and keys are identical.

Two partitioned data sets or two PDSEs are considered equalunder all of the
following conditions:
v Corresponding members contain the same number of records.
v Note lists are in the same position within corresponding members.
v Corresponding records and keys are identical.
v Corresponding directory user data fields are identical.

If all these conditions are not met for a specific type of data set, those data sets are
considered unequal. If records are unequal, the record and block numbers, the
names of the DD statements that define the data sets, and the unequal records are
listed in a message data set. Ten successive unequal comparisons stop the job
step, unless you provide a routine for handling error conditions.

Load module partitioned data sets that reside on different types of devices should
not be compared. Under most circumstances, the data sets will not compare as
equal.

Partitioned data sets or PDSEs can be compared only if all the names in one or
both of the directories have counterpart entries in the other directory. The
comparison is made on members that are identified by these entries and
corresponding user data.

Figure 1 shows the directories of two partitioned data sets. Directory 2 contains
corresponding entries for all the names in Directory 1; therefore, the data sets can
be compared.

Directory 1
A B C D E F G H

I J K L

Directory 2

A B C D G L

Figure 1. Partitioned Directories Whose Data Sets Can Be Compared Using IEBCOMPR

© Copyright IBM Corp. 1979, 2002 11

Figure 2 shows the directories of two partitioned data sets. Each directory contains
a name that has no corresponding entry in the other directory; therefore, the data
sets cannot be compared, and the job step will be ended.

User exits are provided for optional user routines to process user labels, handle
error conditions, and modify source records. See Appendix C, “Specifying User
Exits with Utility Programs” on page 341 for a discussion of the linkage conventions
to be followed when user routines are used.

If IEBCOMPR is invoked from an application program or TSO, you can dynamically
allocate the data sets by calling dynamic allocation (SVC 99) or the TSO
ALLOCATE command before calling IEBCOMPR.

Input and Output
IEBCOMPR uses the following input:

v Two sequential data sets, partitioned data sets, PDSEs, or USS files to be
compared.

v A control data set that contains utility control statements. This data set is required
if the input data sets are partitioned or PDSEs, or if user routines are used.

IEBCOMPR produces as output a message data set that contains informational
messages (for example, the contents of utility control statements), the results of
comparisons, and error messages.

See Appendix A for IEBCOMPR return codes.

Control
IEBCOMPR is controlled by job and utility control statements. The job control
statements are required to process IEBCOMPR and to define the data sets that are
used and produced by IEBCOMPR. The utility control statements are used to
indicate the input data set organization (that is, sequential, partitioned, or PDSE), to
identify any user routines that may be provided, and to indicate if user labels are to
be treated as data.

Job Control Statements
Table 5 shows the job control statements for IEBCOMPR.

Table 5. Job Control Statements for IEBCOMPR

Statement Use

JOB Starts the job.

Figure 2. Partitioned Directories Whose Data Sets Cannot Be Compared Using IEBCOMPR

IEBCOMPR

12 z/OS V2R13.0 DFSMSdfp Utilities

Table 5. Job Control Statements for IEBCOMPR (continued)

Statement Use

EXEC Specifies the program name (PGM=IEBCOMPR) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT
DD

Defines a sequential data set which will be used for messages produced by
IEBCOMPR. This data set can be written to a system output device (SYSOUT),
a tape volume, a direct access volume, TSO terminal, or dummy (DUMMY DD).

SYSUT1
DD

Defines an input data set or USS file to be compared.

SYSUT2
DD

Defines an input data set or USS file to be compared.

SYSIN DD Defines the control data set or specifies DUMMY if the input data sets are
sequential and no user routines are used. The control data set normally resides
in the input stream; however, it can be defined as a member within a library of
partitioned members.

One or both of the input data sets can be passed from a preceding job step.

You can compare data sets that reside on different device types. However, you
should not compare load module libraries that reside on different device types. You
can also compare sequential data sets that were written at different densities.

The SYSPRINT DD statement must be present for each use of IEBCOMPR. The
block size specified in the SYSPRINT DD statement must be a multiple of 121.

The SYSIN DD statement is required. The block size specified in the SYSIN DD
statement must be a multiple of 80.

The input data sets must have the same logical record length. Otherwise, a
comparison of the two data sets will show them to be unequal. The block sizes of
the input data sets can differ. For fixed block (FB) data sets, block sizes must be
multiples of the logical record length. The block sizes cannot exceed 32760 bytes.

Utility Control Statements
Table 6 shows the utility control statements that are used to control IEBCOMPR.

Table 6. IEBCOMPR Utility Control Statements

Statement Use

COMPARE Indicates the organization of a data set.

EXITS Identifies user exit routines to be used.

LABELS Indicates if user labels are to be treated as data by IEBCOMPR.

Continuation requirements for utility control statements are described in “Continuing
Utility Control Statements” on page 8.

COMPARE Statement
You use the COMPARE statement to indicate the organization of the data sets you
want to compare.

The COMPARE statement, if included, must be the first utility control statement.
COMPARE is required if you use the EXITS or LABELS statement or if the input
data sets are partitioned data sets or PDSEs.

IEBCOMPR

Chapter 2. IEBCOMPR (Compare Data Sets) Program 13

The syntax of the COMPARE statement is:

[label] COMPARE TYPORG={PS|PO}

where:

TYPORG={PS|PO}
specifies the organization of the input data sets. The values that can be coded
are:

PS
specifies that the input data sets are sequential data sets. This is the
default.

PO
specifies that the input data sets are partitioned data sets or PDSEs.

EXITS Statement
You use the EXITS statement to identify any exit routines you want to use. If an exit
routine is used, the EXITS statement is required. If you use more than one EXITS
statement, IEBCOMPR will only use the last EXITS statement. All others will be
ignored. For a discussion of the processing of user labels as data set descriptors,
see “Processing User Labels” on page 345.

The syntax of the EXITS statement is:

[label] EXITS [INHDR=routinename]

[,INTLR=routinename]
[,ERROR=routinename]
[,PRECOMP=routinename]

where:

INHDR=routinename
specifies the name of the routine that processes user input header labels.

INTLR=routinename
specifies the name of the routine that processes user input trailer labels.

ERROR=routinename
specifies the name of the routine that is to receive control for error handling
after each unequal comparison. If this parameter is omitted and ten consecutive
unequal comparisons occur while IEBCOMPR is comparing sequential data
sets, processing is stopped; if the input data sets are partitioned or PDSE,
processing continues with the next member.

PRECOMP=routinename
specifies the name of the routine that processes logical records (physical blocks
in the case of variable spanned (VS) or variable blocked spanned (VBS)
records longer than 32K bytes) from either or both of the input data sets before
they are compared.

LABELS Statement
You use the LABELS statement to specify whether user labels are to be treated as
data by IEBCOMPR. For a discussion of this option, refer to “Processing User
Labels” on page 345.

IEBCOMPR

14 z/OS V2R13.0 DFSMSdfp Utilities

If you use more than one LABELS statement, IEBCOMPR will only use the last
LABELS statement. All others will be ignored.

Table 7 shows the syntax of the LABELS statement.

Table 7. Syntax of LABEL statement

[label] LABELS [DATA={YES|NO|ALL|ONLY}]

DATA={YES|NO|ALL|ONLY}
specifies if user labels are to be treated as data. The values that can be coded
are:

YES
specifies that any user labels that are not rejected by a user’s label
processing routine are to be treated as data. Processing of labels as data
stops in compliance with standard return codes. YES is the default.

NO
specifies that user labels are not to be treated as data.

ALL
specifies that all user labels are to be treated as data. A return code of 16
causes IEBCOMPR to complete processing of the remainder of the group
of user labels and to end the job step.

ONLY
specifies that only user header labels are to be treated as data. User
header labels are processed as data regardless of any return code. The job
ends upon return from the OPEN routine.

Requirement: LABELS DATA=NO must be specified to make IBM standard user
label (SUL) exits inactive when input/output data sets with nonstandard labels (NSL)
are to be processed.

IEBCOMPR Examples
The examples in Table 8 illustrate some of the uses of IEBCOMPR. The numbers in
the “Example” column refer to examples that follow.

Examples that use disk or tape in place of actual device names or numbers must
be changed before use. The actual device names or numbers depend on how your
installation has defined the devices to your system.

Table 8. IEBCOMPR Example Directory

Operation Data Set
Organization

Devices Comments Example

COMPARE Partitioned Disk No user routines. Blocked input. 6

COMPARE PDSE Disk No user routines. SMS-managed data
sets.

8

COMPARE Sequential 9-track Tape No user routines. Blocked input. 1

COMPARE Sequential 7-track Tape No user routines. Blocked input. 2

COMPARE Sequential 7-track Tape
and 9-track
Tape

User routines. Blocked input. Different
density tapes.

3

IEBCOMPR

Chapter 2. IEBCOMPR (Compare Data Sets) Program 15

Table 8. IEBCOMPR Example Directory (continued)

Operation Data Set
Organization

Devices Comments Example

COMPARE Sequential System input
stream, 9-track
Tape

No user routines. Blocked input. 4

COPY (using
IEBGENER) and
COMPARE

Sequential Disk or Tape No user routines. Blocked input. Two
job steps; data sets are passed to
second job step.

5

COPY (using
IEBCOPY) and
COMPARE

Partitioned Disk User routine. Blocked input. Two job
steps; data sets are passed to second
job step.

7

Example 1: Compare Data Sets that Reside on Tape
In this example, two sequential data sets that reside on 9-track tape volumes are
compared.

//TAPETAPE JOB ...
// EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SET1,UNIT=tape,LABEL=(,NL),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
// DISP=(OLD,KEEP),VOLUME=SER=001234
//SYSUT2 DD DSNAME=SET2,UNIT=tape,LABEL=(,NL),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=1040),
// DISP=(OLD,KEEP),VOLUME=SER=001235
//SYSIN DD DUMMY
/*

The job control statements are discussed below:

v SYSUT1 DD defines an input data set (SET1), which resides on an unlabeled
9-track tape volume.

v SYSUT2 DD defines an input data set (SET2), which resides on an unlabeled
9-track tape volume.

v SYSIN DD defines a dummy data set. Because no user routines are used and
the input data sets have a sequential organization, utility control statements are
not necessary.

Example 2: Compare Sequential Data Sets that Reside on Tape
In this example, two sequential data sets that reside on 7-track tape volumes are
compared.

//TAPETAPE JOB ...
// EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SET1,LABEL=(2,SUL),DISP=(OLD,KEEP),
// VOL=SER=001234,DCB=(DEN=2,RECFM=FB,LRECL=80,
// BLKSIZE=2000,TRTCH=C),UNIT=tape
//SYSUT2 DD DSNAME=SET2,LABEL=(,SUL),DISP=(OLD,KEEP),
// VOL=SER=001235,DCB=(DEN=2,RECFM=FB,LRECL=80,
// BLKSIZE=2000,TRTCH=C),UNIT=tape
//SYSIN DD *

COMPARE TYPORG=PS
LABELS DATA=ONLY

/*

The control statements are discussed below:

IEBCOMPR

16 z/OS V2R13.0 DFSMSdfp Utilities

v SYSUT1 DD defines an input data set, SET1, which resides on a labeled, 7-track
tape volume. The blocked data set was originally written at a density of 800 bits
per inch (DEN=2) with the data converter on (TRTCH=C).

v SYSUT2 DD defines an input data set, SET2, which is the first or only data set
on a labeled, 7-track tape volume. The blocked data set was originally written at
a density of 800 bits per inch (DEN=2) with the data converter on (TRTCH=C).

v SYSIN DD defines the control data set, which follows in the input stream.

v COMPARE TYPORG=PS specifies that the input data sets are sequentially
organized.

v LABELS DATA=ONLY specifies that user header labels are to be treated as data
and compared. All other labels on the tape are ignored.

Example 3: Compare Sequential Data Sets Written at Different
Densities

In this example, two sequential data sets that were written at different densities on
different tape units are compared.

//TAPETAPE JOB ...
// EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SET1,LABEL=(,SUL),DISP=(OLD,KEEP),
// VOL=SER=001234,DCB=(DEN=1,RECFM=FB,LRECL=80,
// BLKSIZE=320,TRTCH=C),UNIT=tape
//SYSUT2 DD DSNAME=SET2,LABEL=(,SUL),DISP=(OLD,KEEP),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=640),
// UNIT=tape,VOLUME=SER=001235
//SYSIN DD *

COMPARE TYPORG=PS
EXITS INHDR=HDRS,INTLR=TLRS
LABELS DATA=NO

/*

The control statements are discussed below:

v SYSUT1 DD defines an input data set, SET1, which is the first or only data set
on a labeled, 7-track tape volume. The blocked data set was originally written at
a density of 556 bits per inch (DEN=1) with the data converter on (TRTCH=C).

v SYSUT2 DD defines an input data set, SET2, which is the first or only blocked
data set on a labeled tape volume. In this example, assume SYSUT2 is on a
9-track tape drive.

v SYSIN DD defines the control data set, which follows in the input stream.

v COMPARE TYPORG=PS specifies that the input data sets are sequentially
organized.

v EXITS identifies the names of routines to be used to process user input header
labels and trailer labels.

v LABELS DATA=NO specifies that the user input header and trailer labels for
each data set are not to be compared.

Example 4: Compare Sequential Data Sets—Input Stream and Tape
Input

In this example, two sequential data sets (input stream and tape) are compared.
//CARDTAPE JOB ...
// EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT2 DD UNIT=tape,VOLUME=SER=001234,LABEL=(,NL),

IEBCOMPR

Chapter 2. IEBCOMPR (Compare Data Sets) Program 17

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
// DISP=(OLD,KEEP)
//SYSUT1 DD DATA

(input data set)

/*

The control statements are discussed below:

v SYSIN DD defines a dummy control data set. Because no user routines are
provided and the input data sets are sequential, utility control statements are not
necessary.

v SYSUT2 DD defines an input data set, which resides on an unlabeled, tape
volume.

v SYSUT1 DD defines a system input stream data set.

Example 5: Copy and Compare Sequential Data Set in Two Job Steps
In this example, a sequential disk or tape data set is copied and compared in two
job steps.

//TAPETAPE JOB ...
//STEPA EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=WAREHOUS.COPYSET1,DISP=(OLD,PASS),
//SYSUT2 DD DSNAME=WAREHOUS.COPYSET2,DISP=(,PASS),LABEL=(,SL),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=640),
// UNIT=tape,VOLUME=SER=001235
//SYSIN DD DUMMY
//STEPB EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=*.STEPA.SYSUT1,DISP=(OLD,KEEP)
//SYSUT2 DD DSNAME=*.STEPA.SYSUT2,DISP=(OLD,KEEP)
//SYSIN DD DUMMY

The first job step copies the data set and passes the original and copied data sets
to the second job step. The second job step compares the two data sets.

The control statements for the IEBCOMPR job step are discussed below:

v SYSUT1 DD defines an input data set passed from the preceding job step
(COPYSET1). The data set resides on a labeled tape volume.

v SYSUT2 DD defines an input data set passed from the preceding job step
(COPYSET2). The data set, which was created in the preceding job step, resides
on a labeled tape volume.

v SYSIN DD defines a dummy control data set. Because the input is sequential
and no user exits are provided, no utility control statements are required.

Example 6: Compare Two Partitioned Data Sets
In this example, two partitioned data sets are compared.

//DISKDISK JOB ...
//STEP1 EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=PDSSET1,UNIT=disk,DISP=SHR,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
// VOLUME=SER=111112
//SYSUT2 DD DSNAME=PDSSET2,UNIT=disk,DISP=SHR,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),

IEBCOMPR

18 z/OS V2R13.0 DFSMSdfp Utilities

// VOLUME=SER=111113
//SYSIN DD *

COMPARE TYPORG=PO
/*

The control statements are discussed below:

v SYSUT1 DD defines an input partitioned data set, PDSSET1. The blocked data
set resides on a disk volume.

v SYSUT2 DD defines an input partitioned data set, PDSSET2. The blocked data
set resides on a disk volume.

v SYSIN DD defines the control data set, which follows in the input stream.

v COMPARE TYPORG=PO indicates that the input data sets are partitioned.

Example 7: Copy and Compare Partitioned Data Set in Two Job Steps
In this example, a partitioned data set is copied and compared in two job steps.

//DISKDISK JOB ...
//STEPA EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=MAINDB.LOG.OLDSET,DISP=SHR
//SYSUT2 DD DSNAME=NEWMEMS,UNIT=disk,DISP=(,PASS),
// VOLUME=SER=111113,SPACE=(TRK,(5,5,5)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=640)
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSIN DD *

COPY OUTDD=SYSUT2,INDD=SYSUT1
SELECT MEMBER=(A,B,D,E,F)

/*
//STEPB EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=OLDSET,DISP=(OLD,KEEP)
//SYSUT2 DD DSNAME=NEWMEMS,DISP=(OLD,KEEP)
//SYSIN DD *

COMPARE TYPORG=PO
EXITS ERROR=SEEERROR

/*

The first job step copies the data set and passes the original and copied data sets
to the second job step. The second job step compares the two data sets.

The control statements for the IEBCOMPR job step are discussed below:

v SYSUT1 DD defines a blocked input data set (MAINDB.LOG.OLDSET) that is
passed from the preceding job step. The data set resides on a disk or tape
volume.

v SYSUT2 DD defines a blocked input data set (MAINDB.LOG.NEWMEMS) that is
passed from the preceding job step. The data set resides on a disk volume.

v SYSIN DD defines the control data set, which follows in the input stream.

v COMPARE TYPORG=PO specifies partitioned organization.

v EXITS specifies that a user error routine, SEEERROR, is to be used.

Because the input data set names are not identical, the data sets can be retrieved
by their data set names.

Example 8: Compare Two PDSEs
In this example, two PDSEs are compared.

IEBCOMPR

Chapter 2. IEBCOMPR (Compare Data Sets) Program 19

//DISKDISK JOB ...
// EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=PDSE1,DISP=SHR
//SYSUT2 DD DSN=PDSE2,DISP=SHR
//SYSIN DD *

COMPARE TYPORG=PO
/*

PDSEs no longer must be SMS managed. Because these PDSEs are cataloged,
you need not specify the UNIT or VOLUME parameters.

The control statements are discussed below:

v SYSUT1 DD and SYSUT2 DD define input PDSEs, PDSE1, and PDSE2.
Because no DCB values are specified, the DCB values that were specified in
creating the data sets will be used.

v SYSIN DD defines the control data set, which follows in the input stream.

v COMPARE TYPORG=PO indicates that the input data sets are PDSEs.

IEBCOMPR

20 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 3. IEBCOPY (Library Copy) Program

IEBCOPY is a data set utility that is used to copy or merge members between one
or more partitioned data sets, or partitioned data sets extended (PDSEs), in full or
in part. You can also use IEBCOPY to create a backup of a partitioned data set into
a sequential data set (called an unload data set or PDSU), and to copy members
from the backup into a partitioned data set.

You can use IEBCOPY to perform the foolowing tasks:

v Make a copy of a partitioned data set or PDSE.

v Merge partitioned data sets (except when unloading).

v Create a sequential form of a partitioned data set or PDSE for a backup or
transport.

v Reload one or more members from a PDSU into a partitioned data set or PDSE.
(Note that an unloaded load module cannnot be converted to a program object in
this process.)

v Select specific members of a partitioned data set or PDSE to be copied, loaded,
or unloaded.

v Replace members of a partitioned data set or PDSE.

v Rename selected members of a partitioned data set or PDSE when copied.

v Exclude members from a data set to be copied, unloaded, or loaded. (Except on
COPYGRP).

v Compress a partitioned data set in place.

v Upgrade a load module for faster loading by MVS program fetch.

v Copy and reblock load modules.

v Convert load modules in a partitioned data set to program objects in a PDSE
when copying a partitioned data set to a PDSE.

v Convert a partitioned data set to a PDSE or a PDSE to a partitioned data set.

v Copy to or from a PDSE data set, a member and its aliases together as a group
(COPYGRP).

In addition, IEBCOPY automatically lists the number of unused directory blocks and
the number of unused tracks that are available for member records if the output
data set is a partitioned data set.

Related reading: For important information on shared partitioned data sets see
“Job Control Statements” on page 6.

Converting Load Modules to Program Objects or the Reverse
Program objects are created automatically when load modules are copied into a
PDSE. Likewise, program objects are automatically converted back to load modules
when they are copied into a partitioned data set. Note that some program objects
cannot be converted into load modules because they use features of program
objects that do not exist in load modules. See the z/OS DFSMS Program
Management for more information about differences between program objects and
load modules.

IEBCOPY is not able to directly convert between program objects and load modules
when loading or unloading a PDSE or partitioned data set. A load operation can
only reload load modules into partitioned data sets or reload program objects into a

© Copyright IBM Corp. 1979, 2002 21

PDSE. Unloading a partitioned data set can only place load modules into the
unload data set. Similarly, unloading a PDSE can only place program objects into
the unload data set.

Therefore, to convert an unloaded load module into a program object, reload the
load module into a partitioned data set and then copy the partitioned data set to a
PDSE. To convert a program object into an unloaded load module, copy the PDSE
to a partitioned data set and then unload the partitioned data set.

If your partitioned data set contains both load modules and data members, then you
will have to convert the partitioned data set into two separate PDSEs using the
method described above—one for program objects and the second for data
members.

Converting Partitioned Data Sets to PDSEs
You can use IEBCOPY to convert partitioned data sets to PDSEs.

To convert a partitioned data set to a PDSE, create a PDSE and copy the
partitioned data set into the new PDSE. This can be accomplished with one use of
IEBCOPY.

You cannot convert a partitioned data set that has any of the following features:

v Both load modules and nonload modules in the same partitioned data set.
Individual members of a partitioned data set can be converted by copying them
into two separate PDSEs, the first for data and the second for program objects.

v Note lists. Load modules that contain note lists can be placed into PDSEs
because they are converted automatically into program objects.

v Nonzero key lengths in the members.

Copying Data Sets
IEBCOPY can be used to totally or partially copy a partitioned data set from one
direct access volume to another. In addition, a data set can be copied to its own
volume, provided its data set name is changed. (If the data set name is not
changed, IEBCOPY interprets the request as a compress-in-place.)

When you use IEBCOPY to copy a PDSE to a PDSE, either volume to volume or to
its own volume, all DDM attributes are also copied.

Members copied into a partitioned data set are not physically reordered; members
are copied in the physical order in which they occur in the original data set.

Merging Data Sets
Merging data sets is done by copying or loading the additional members to an
existing partitioned data set. The merge operation (ordering of the directory of the
output data set) is automatically performed by IEBCOPY.

Increasing Directory Space for a Partitioned Data Set
IEBCOPY cannot increase the number of directory blocks in a partitioned data set.
(A PDSE directory automatically expands as needed.) If you are not sure there will
be enough directory blocks in the output partitioned data set you are merging to,
then you should expand the output data set directory space before beginning the
merge operation.

IEBCOPY

22 z/OS V2R13.0 DFSMSdfp Utilities

Use IEHLIST to determine how much directory space remains in a partitioned data
set. If more blocks are needed, this procedure will extend most data sets:
1. Rename the data set.
2. Allocate a new data set with enough space and directory blocks.
3. Copy the renamed data set to the newly allocated data set.
4. Delete the renamed data set (or save it as a backup).

Unloading (Backing up) Data Sets
IEBCOPY can be used to create a backup copy of a partitioned data set by copying
(unloading) it to a sequential data set on DASD, tape, or other device supported by
QSAM.

IEBCOPY creates an unload data set when you specify physical sequential
organization (DSORG=PS) for the output data set. To create a partitioned data set,
specify DSORG=PO and DSNTYPE=PDS or DSNTYPE=LIBRARY.

Requirement: If you do not explicitly state the DSORG, it might be set opposite to
your intention by ACS routines or other JCL parameters. For example, if you specify
LIKE= or DCB= or a model DSCB and omit the DSORG, then whatever DSORG
the referenced object has will be implicitly added to your DD statement. Always
specify a DSORG if you are not sure what will be taken from a referenced object.

Attention: Do not change the DCB parameters of an unload data set after
IEBCOPY finishes creating it, or IEBCOPY might not be able to reload it.

To unload more than one partitioned data set to the same tape volume in one
execution of IEBCOPY, multiple copy operations must be used and multiple
sequential data sets must be allocated to successive files on the tape.

IEBCOPY can copy a PDSU to a PDSU directly without the need to reload it to a
PDS and then unload the PDS to create the new PDSU. If a selective copy is not
required then it will be faster to use IEBGENER to copy the PDSU to a new PDSU.

Only a COPY operation can create an unload data set; COPYMOD cannot.

Copying Directory Information between a Partitioned Data Set
and a PDSE
The PDSE directory can contain attributes in addition to those traditionally kept in a
partitioned data set directory entry.

Some PDSE extended attributes are recorded on an unload data set and will be
reloaded when the target is a PDSE.

If you reload an unloaded PDSE that contains program objects to a partitioned data
set, an error message is issued and the operation fails.

Information that is kept as user data in a partitioned data set directory, such as PDF
statistics, will move to a PDSE directory and back from a PDSE directory to a
partitioned data set directory without change.

Loading or Copying Unload Data Sets
Using IEBCOPY, you can re-create a partitioned data set from an unloaded copy of
a partitioned data set by copying the sequential (unloaded) data set to a partitioned
data set. A partitioned data set may be loaded from an unloaded PDSE if it does

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 23

not contain program objects, and a PDSE may be loaded from an unloaded
partitioned data set if it does not contain load modules.

Note: <A load operation cannot convert unloaded load modules to program objects
or program objects to unloaded load modules.

You can create a single partitioned data set from multiple input sequential
(unloaded) data sets.

For unload and load operations, requests are handled in the same way as for a
copy operation. You can choose to process specific members and to rename them.

A partitioned data set in the unload format will have a variable spanned record
format. When the unload data set is subsequently loaded, the output data set will
have the same characteristics it had before the unload operation, unless you
provide overriding characteristics when you reload the data set.

IEBCOPY Unload Data Set DCB Parameters
An unload data set is always a variable spanned record format with sequential
organization, (RECFM=VS and DSORG=PS).

The logical record length of the unload data set is intended to hold a block from the
input data set plus a header, with these considerations:

1. The LRECL is calculated as being the larger of:
a. 280 bytes, or
b. 16 bytes + the block size + the key length of the input data set.

2. If the LRECL exceeds 32760, it is reduced to 32760.

Tip: Applications reading an unload data set should be aware that for
RECFM=VS data sets, the actual length of an assembled logical record could
exceed 32760 bytes, even if the LRECL was reduced to 32760 by this step.

3. If the user supplies an LRECL larger than the one calculated here, it will be
placed in the data set label; however, the size of the logical record that
IEBCOPY creates will not be increased.

The block size (BLKSIZE) for an unload data set is determined by the following
steps:

1. The initial block size is set to the block size supplied by the user, or if the user
did not supply a block size, it is calculated as the LRECL plus 4.

2. If the block size is less than 284, it is increased to 284.

3. If the block size exceeds 32760, it is reduced to 32760.

4. The block size value is then compared with the largest block size acceptable to
the output device. If the output device capacity is smaller then the block size, it
is set to the maximum allowed for the output device.

Because the unload data set is unblocked, increasing the block size beyond LRECL
plus 4 will not result in longer physical records or better utilization.

The block size is stored in the first control record (COPYR1) and used at load time.
If the block size of the unload data set is changed after it is created, IEBCOPY
might not be able to reload it.

IEBCOPY

24 z/OS V2R13.0 DFSMSdfp Utilities

Recommendation: Do not set the PDSU block size equal to the PDS block size or
your PDSU will have very poor space utilization and performance. Let IEBCOPY
pick the block size or choose a PDSU block size 20 bytes greater than the PDS
block size.

Appendix B, “Unload Partitioned Data Set Format” on page 331 describes the
unload data set format.

Selecting Members to be Copied, Unloaded, or Loaded
Select specific members to be processed from one or more data sets by coding a
SELECT statement to name the members. Alternatively, all members but a specific
few can be designated by coding an EXCLUDE statement to name members not to
be processed.

You cannot use both a SELECT and an EXCLUDE statement in the same copy
operation (same set of input ddnames).

A maximum of eight characters can be given for the member or alias name on a
copy operation.

Selected members are searched for in a low-to-high (a-to-z) collating sequence,
regardless of the order in which they are specified on the SELECT statement;
however, they are copied in the same physical sequence in which they appear on
the input partitioned data set or PDSE.

Once a member designated in a SELECT statement is found in an input data set,
no search is made for it on any subsequent input data set. When all of the selected
members are found, the operation ends, even if all data sets have not yet been
processed.

Example:
If members A and B are specified and A is found on the first of three input data
sets, it is not searched for again when the second and third data sets are
searched.
If B is found on the second input data set, the operation is successfully ended
after the second input data set has been processed, and the third input data set
is never examined.

When you copy, you can rename members unless the input and output data sets
are the same.

Excluding Members from a Copy Operation
Members from one or more input data sets can be excluded from a copy, unload, or
load operation. The excluded member is searched for on every input data set in the
copy, unload, or load operation and is always omitted. Members are excluded from
the input data sets named on an INDD statement that precedes the EXCLUDE
statement.

A maximum of eight characters can be given for the member or alias name on a
copy operation.

Restriction: EXCLUDE is not allowed for COPYGRP.

The replace option can be specified on the data set level in an exclusive copy or
load, in which case, nonexcluded members on the input data set replace identically

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 25

|
|

|
|

named members on the output data set. See “Replacing Members in a Data Set”
for more information on the replace option.

Copying Members That Have Alias Names (COPY Statement)
This topic discusses using the COPY statement for copying a PDS, PDSU, or
PDSE that has members with alias names. The COPYGRP statement is
recommended for copying program objects. See “Copying Program Objects
(COPYGRP Statement)” on page 28 for information on copying program objects.

Tip: If the COPY statement is used to copy program objects, errors can occur.

v If you are copying an entire data set to a new data set (one that has no
members before the copy operation), all members and their aliases will be
copied, and they will have the same relationship to one another as they had on
the original data set.

v If you are merging a data set with another data set, no members or aliases on
the output data set will be changed unless you specify that input members are to
replace output members.

Example:
In all instances, if you have a member A with alias B on your input data set,
and a member C with alias B on your output data set, if you do not indicate
replacement, member A will be copied over, but the alias name B will
continue to refer to C. If you do indicate replacement, B will be copied as an
alias of member A in the newly merged data set.

v When selectively copying from a partitioned data set, you must specify every
name that you want copied, including their aliases.

Example:
If you are selecting member A, and member A has the aliases B and C, to
copy all three names you must specify SELECT MEMBER=(A,B,C). This will
result in one copy of the data for that member, and all three names placed in
the directory and associated with that member data.
If you specify SELECT MEMBER=(A,C). This will result in one copy of the
data for that member, and two names, A and C, placed in the directory and
associated with that member data.

v When copying to or from a PDSE, you must specify the member’s name. An
alias will not become the member name in the output data set.

v If you are exclusively copying a data set (using the EXCLUDE statement), you
must specify not only a member’s name, but also all of its alias names to exclude
the member data from the copy operation.

Example:
If you want to exclude member A from the copy operation, and A has the alias
names B and C, you must specify EXCLUDE MEMBER=(A,B,C). If you
specify only MEMBER=A, then the member is copied to the output data set
with the alias names B and C.

v The rules for replacing or renaming members apply to both aliases and
members; no distinction is made between them.

Replacing Members in a Data Set
You can use IEBCOPY’s COPY or COPYGRP statement to replace members on an
output partitioned data set or PDSE. The explanations in this topic are for the
COPY statement. See “Copying Program Objects (COPYGRP Statement)” on
page 28 for an explanation of replacing members using COPYGRP.

With the COPY statement you can perform the following tasks:

IEBCOPY

26 z/OS V2R13.0 DFSMSdfp Utilities

v You can specify replacement on the data set level. In this case, every member of
an input data set will be copied to the output data set. Each member on the
output data set that has a name identical to the name of a member on the input
data set will be replaced.

v You can indicate replacement on the member level. In this case, you can indicate
that a particular member of the input data set is to replace an identically named
member of the output data set, and indicate that another member is to be copied
only if it is not already present on the output data set.

When you specify replacement on the member level, you can also rename an
input member. The output data set directory is searched for the new name to see
if the member should be copied. For instance, you could rename member A to B,
and have it replace member B on the output data set.

Specifying Replacement on the Data Set Level: When you merge partitioned
data sets, or load an unload data set into a partitioned data set that already has
members, the input and output data sets might have members with the same
names. Under normal processing, these input members will not replace the output
members that have their names. To specify that all input members are to be copied
to the output data set, and thus replace any output members of the same name,
use the replace (R) option on an INDD or COPY statement.

When replace (R) is specified on the data set level, the input data is processed as
follows:

v In a full copy or load process, all members in an input data set are copied to an
output partitioned data set; members whose names already exist in the output
partitioned data set are replaced by members copied or loaded from the input
data set.

v In a selective copy or load process, all selected input members will be copied to
the output data set, replacing any identically named output data set members.
Specifying replace (R) on the data set level when performing a selective copy
relieves you of the need to specify replace (R) for each member you want
copied.

v In an exclusive copy process, all nonexcluded members on the input data sets
are copied or loaded to an output partitioned data set, replacing those members
with duplicate names on the output partitioned data set.

Specifying Replacement on the Member Level: When you specify the name of
a member to be copied in the MEMBER operand of the SELECT statement, specify
the replace (R) option for input members which have identically named members in
the output data set. In this way, you can copy many members from an input data
set, but allow only a few of them to replace members in the output data set.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 27

Processing Considerations for Replacing Members: There are differences
between full, selective, and exclusive copy or load processing. These differences
should be remembered when specifying the replace (R) option on either the data
set or member level, and when the output data set contains member names
common to some or all the input data sets being copied or loaded. These
differences are:

v When a full copy or load is performed, the output partitioned data set contains
the replacing members that were on the last input data set copied.

v When a selective copy or load is performed, the output partitioned data set
contains the selected replacing members that were found on the earliest input
data set searched. After a selected member is found, it is not searched for again.
Therefore, after it is found, a selected member is copied or loaded. If the same
member exists on another input data set, it is not searched for, and hence, not
copied or loaded.

v When an exclusive copy or load is performed, the output partitioned data set
contains all members, except those specified for exclusion, that were on the last
input data set copied or loaded.

Renaming Selected Members

Using the SELECT statement to rename members: To use the SELECT
statement to rename members, you should place the old name, the new name, and
optionally a replace (R) indicator together inside parentheses as an operand of the
MEMBER parameter on a SELECT statement. MEMBER parameter operands may
consist of as many old name/new name/replace sets as you need.

The replace (R) option must be used if the new name matches a name of a
member in the output data set, or the member will not be copied. It does not matter
if replace is indicated globally for all members by using the INDD parameter, or if it
is indicated for individual members in the MEMBER parameter.

The selected members are not renamed in the input data set directory. They are
just added to the output data set with the new name.

Copying Program Objects (COPYGRP Statement)
It is recommended that you use the COPYGRP statement to copy program objects
and their aliases from or to a PDSE data set. Program objects can have aliases
that are longer than eight characters. Using the COPYGRP statement will ensure
that these longer aliases are copied along with their member.

Use the COPYGRP statement to begin a group copy, unload, or load. A group
consists of a member and all of its aliases. COPYGRP treats the group as a single
entity.

COPYGRP can be used to copy a data set when either the input data set or the
output data set, or both, are PDSE:

PDSE to PDSE
PDSE to PDS
PDS to PDSE

For unloading groups:
PDSE to PS

For loading groups:
PS to PDSE

IEBCOPY

28 z/OS V2R13.0 DFSMSdfp Utilities

If neither data set is a PDSE, the request is treated the as a COPY operation
subject to the syntax requirements of COPYGRP.

When using the COPYGRP statement:

v All aliases in a group will be copied with the member or neither the aliases or the
member in a group will be copied.

v There can be only one INDD per copy operation.

v You can use the SELECT statement to selectively copy members. Either the
member name or an alias can be specified to copy the member and all of its
aliases.

v Do not indicate replace (R) on the SELECT statement.

v The EXCLUDE statement is not supported.

Replacing Program Objects
If the replace (R) option is indicated on the INDD parameter,

v The output data set members and their aliases will be replaced if they have the
same member and alias names as the input data set’s members and aliases.

Example:
The input data set has member A with alias B; the output data set has
member A with alias B. The input data set’s member and alias will replace the
output data set member and alias.

v The copy will fail if a member’s alias in the output data is the same as a
differently named member’s alias in the input data set.

Example:
The input data set has member A with alias B; the output data set has
member C with alias B. The copy will fail because the alias B points to a
member with a different name on the output data set.

v If the output data set’s members and aliases do not match the input data set’s
members and aliases, then all of the input data set’s members and aliases are
copied.

Example:
The input data set has member A with alias B; the output data set has
member C with alias D. After the copy, the output data set will contain A with
alias B and C with alias D.

The EXCLUDE statement is not supported.

Compressing a Partitioned Data Set
A partitioned data set will contain unused areas (sometimes called gas) where a
deleted member or the old version of an updated member once resided. This
unused space is only reclaimed when a partitioned data set is copied to a new data
set, or after a compress-in-place operation successfully completes. It has no
meaning for a PDSE and is ignored if requested.

The simplest way to request a compress-in-place operation, is to specify the same
ddname for both the OUTDD and INDD parameters of a COPY statement.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 29

However, a compress is actually performed when both the input and output is the
same data set on the same volume. For example, this job step will compress data
set Pacanowska:
//COMPRESS EXEC PGM=IEBCOPY
//A DD DSNAME=’Pacanowska’,DISP=OLD
//B DD DSNAME=’Pacanowska’,DISP=OLD
//SYSIN DD *

COPY OUTDD=B,INDD=A

If multiple entries are made on the INDD statement, a compress-in-place occurs
when any of the input ddnames matches the OUTDD name. The compress
operation is performed in the same relative order as the ddnames in the INDD list.

For example, consider the COPY statement:
COPY OUTDD=B,INDD=(A,B,C,B)

v The data set for ddname A is copied to ddname B
v The data set B is compressed
v ddname C is copied to ddname B
v The data set B is compressed again.

It is a good idea to make a copy of the data set that you intend to
compress-in-place before you actually do so. You can use the same execution of
IEBCOPY to do both, and a following job step could delete the backup copy if the
IEBCOPY job step ends with a return code of 0.

Attention: A partitioned data set can be destroyed if IEBCOPY is interrupted during
processing, for example, by a power failure, abend, TSO attention, or I/O error.
Keep a backup of the partitioned data set until the successful completion of a
compress-in-place.

Attention: Do not compress a partitioned data set currently being used by more
than one user. If you do, the other users will see the data set as damaged, even
though it is not. If any of these other users update the partitioned data set after you
compress it, then their update will actually damage the partitioned data set.

Processing Considerations for Compress
v If you try to perform a compress-in-place on a PDSE, IEBCOPY will ignore your

request and continue processing with the next control statement.

v A compress-in-place does not release extents assigned to the data set.

v During a compress operation, you cannot include, exclude, or rename selected
members.

v You may not change any data set DCB parameters, such as block size, when
compressing a data set.

Altering Load Modules
ALTERMOD is designed as a one-time update operation against load modules from
old systems. You can use IEBCOPY to update partitioned data set load modules
that were written by a linkage editor prior to MVS/370, so that they will load faster.
Load modules processed with the linkage editor in MVS/370 and subsequent
versions of MVS and DFSMS do not require alterations, nor do program objects in
a PDSE.

ALTERMOD will place correct relocation dictionary (RLD) counts and segment block
counts into control records inside the module. ALTERMOD performs this update
without making a new copy of the load module. It can be used to alter modules that

IEBCOPY

30 z/OS V2R13.0 DFSMSdfp Utilities

might have erroneous RLD counts. Examples of modules that might have erroneous
RLD counts are modules that were created by a program other than the linkage
editor or copied by a program other than IEBCOPY.

The ALTERMOD statement will not function under these conditions:

v The load modules are in scatter-load format or link edited with the noneditable
(NE) attribute.

v The data set is a PDSE. (It is ignored.)

When you use a SELECT statement to identify members to be processed by
ALTERMOD, you cannot rename them.

Copying and Reblocking Load Modules
The COPYMOD statement lets you COPY and reblock the load modules to a block
size appropriate for the device to which you are copying the data set.

The text records, relocation dictionary (RLD)/control records, and note list records of
overlay load modules will be rebuilt when you use COPYMOD. Other records such
as SYM and CESD records will be copied without any changes. The load modules
processed by COPYMOD can be link edited again.

v Load modules in page-aligned format are copied without reblocking, as if the
operation was COPY not COPYMOD, and the functions of ALTERMOD are
performed against the copy that was made.

v Load modules in scatter-load format and modules that were link-edited with the
noneditable (NE) attribute will be copied, but not reblocked or altered.

v Members that are not recognized as load modules will be copied, but not
reblocked or altered.

v Load modules that have the downward compatible (DC) linkage editor attribute
are reblocked to a maximum block size of 1024 (1K) regardless of the value
specified on the MINBLK or MAXBLK parameter.

The block size in the output data set label is increased by COPYMOD as needed to
match the MAXBLK value.

COPYMOD does not write records longer than the output data set block size.
However, if COPYMOD cannot process a member, and COPY is used instead,
COPY will copy all records, including those records longer than the output data set
block size.

The reblocking function of COPYMOD lets you specify the following block sizes:

v A maximum block size for compatibility with other systems or programs

v A minimum block size to specify the smallest block that should be written on the
end of a track

IEBCOPY will determine the amount of space remaining on a track before assigning
a size to the next block to be written. If this amount is smaller than the output block
size, IEBCOPY will try to determine if a smaller block can be written to use the
remaining space on the track. The maximum block size produced by the
COPYMOD function is 32760 bytes.

Changed COPYMOD operation
Before MVS/DFP Version 3, Release 2, the default MAXBLK size for COPYMOD
was 32760. The intention was to make text blocks as long as possible to reduce the
number of text blocks read to fetch the module. This often resulted in physical

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 31

records created in the data set which were longer than the BLKSIZE in the data set
label. (These blocks are called fat blocks.) This condition leads to I/O errors or a
violation of data integrity.

Starting with Version 3, Release 2, the default MAXBLK value is the data set block
size, not 32760. Further, if a MAXBLK value is specified that is larger than the block
size in the data set label, then the value in the data set label is increased to the
specified MAXBLK value.

How IEBCOPY Uses Virtual Storage for Tables and Buffers
Starting with IEBCOPY ESCON® Performance Updates the minimum work area
size is about 208K. If your job has a small REGION size, you might have to
increase it.

The recommended minimum REGION sizes for IEBCOPY jobs are 1M when only
partitioned data sets are copied, and 2M when a PDSE is copied.

The WORK=nnn parameter in the JCL EXEC PARM field controls how much space
IEBCOPY requests for a work area. The REGION size must exceed the work size
plus the program size before an increase in the value of the work parameter will
have an effect.

From this work area comes tables, buffers, and storage for partitioned data set
directories. When there is not enough work area, the partitioned data set directories
spill to SYSUT3 and SYSUT4. If more storage is still needed, IEBCOPY will stop
with a message. Larger WORK and REGION values allow larger directories to be
processed without opening the spill data sets assigned to SYSUT3 and SYSUT4.

Large WORK and REGION sizes should be accompanied by a SIZE parameter
when small data sets are copied. This is to prevent the buffers from becoming too
large and causing a degradation in performance or a shortage in real storage.

How IEBCOPY Allocates Tables and Buffers
1. IEBCOPY obtains as large a work area as possible, up to the value of the

WORK parameter.

2. An initial minimum sized buffer and channel program construction area is
allocated from the work area.

The size of this area is approximately 4 times the size of the largest input or
output device track, plus about 3%.

If IEBCOPY cannot allocate a minimum sized work area, it will stop with a
message.

3. IEBCOPY processes control statements, reads the partitioned data set
directories, and builds a table of members to be copied. When the work area
cannot hold the table and all directories, the directory entries are spilled to
SYSUT3 and SYSUT4 to allow the table to grow. When no room remains and
all directories are spilled, then IEBCOPY ends with a message.

4. If enough storage remains unused in the work area, it is used as a second
buffer.

If a SIZE= parameter is specified, the size of the second buffer is limited so that
the total size of both buffers does not exceed the specified value. If the SIZE=
value will not allow a minimum sized second buffer, it is not allocated.

Tip: When SIZE=999999 (or any number that is a few thousand less than the
WORK= value) is coded, IEBCOPY might be able to allocate buffers in the work

IEBCOPY

32 z/OS V2R13.0 DFSMSdfp Utilities

area but not have enough room remaining for tables. If this happens, increase the
REGION= and WORK= values, or remove the SIZE= parameter.

When data sets with huge directories are copied, make the largest amount of virtual
storage available to retain directory information. Specify WORK=8M (or another
large value) and a correspondingly large REGION.

When data sets with small directories are copied with large work area sizes, the
second I/O buffer can become very large (megabytes) and cause real storage
shortages. This could result in increased system paging and system sluggishness,
because most of the buffer is backed by real frames which are fixed for duration of
the I/O. In this case, specify SIZE=1M or a smaller value to limit the amount of
storage used for buffers, but allow lots of storage to be used for directory
information.

Avoiding the Need to Supply Control Statements
When the SYSIN DD statement is a DD DUMMY, points to an empty file, or is
omitted, IEBCOPY will generate a COPY statement that allows you to run
IEBCOPY without supplying a control statement data set for SYSIN.

The generated statement can take several forms, depending on what parameters
are specified in the JCL EXEC PARM field.

1. When COMPRESS and REPLACE are not specified, the generated statement
is: COPY OUTDD=SYSUT2,INDD=SYSUT1 which will copy without replacing
from the data set designated by the SYSUT1 DD statement to the data set
designated by the SYSUT2 DD statement.

2. When COMPRESS is not specified but REPLACE is specified, the generated
statement is: COPY OUTDD=SYSUT2,INDD=(SYSUT1,R) which will copy with
replace from the data set designated by the SYSUT1 DD statement to the data
set designated by the SYSUT2 DD statement.

3. When COMPRESS is specified, then the generated statement is: COPY
OUTDD=SYSUT2,INDD=SYSUT2 which will compress in place the data set
designated by the SYSUT2 DD statement.

When any of the parameters COMPRESS, COPY, COPYMOD, or REPLACE are
specified in the JCL EXEC PARM field, then SYSIN will not be opened and a
control statement as above will be automatically generated.

Input and Output
IEBCOPY uses the following input:

v A partitioned data set, or a PDSE, or unload data set that contains members to
be copied, merged, altered, reblocked, loaded, or unloaded.

v An optional control data set that contains utility control statements. The control
data set is required when:

There is more than one input or one output data set to be processed,
Designated members are to be selected or excluded, or
A load module library is to be altered or reblocked (ALTERMOD or
COPYMOD is needed).

IEBCOPY produces the following output:

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 33

v Output data sets, which contain the copied, merged, altered, reblocked, or
unloaded members. The output data set is either a new data set (from a copy,
reblock, load, or unload) or an old data set (from a merge, compress-in-place,
copy, alter, or load).

v A message data set, which lists control statements, IEBCOPY activities, and
error messages, as applicable.

IEBCOPY might require:

v Optional spill data sets, which are temporary data sets used to provide space
when not enough virtual storage is available for the input or output partitioned
data set directories. These data sets are opened only when needed.

If IEBCOPY is invoked from an application program, you can dynamically allocate
the data sets by issuing SVC 99 before calling IEBCOPY.

Return Codes
See Appendix A for IEBCOPY return codes.

Restrictions
To use IEBCOPY, see the following characteristics, rules, and restrictions:

v IEBCOPY does support VIO (virtual I/O) data sets.

v IEBCOPY uses the EXCP access method and special I/O appendages.
Therefore:

– IEBCOPY is an APF-authorized program and therefore must run from an
authorized library. This means that if another program calls it, that program
must also be APF-authorized. To protect system integrity, the calling program
must follow the system integrity requirements described in z/OS MVS
Programming: Assembler Services Guide, GC28–1762.

– Some common DCB parameters such as BUFNO are ignored,

– The performance of some combinations of DASD and CPUs might suffer if
IEBCOPY cannot receive and service a (channel) program controlled
interruption (PCI) fast enough.

v IEBCOPY must not be loaded in supervisor state or in protection key zero. It is
an application program that does not use the special system interfaces assumed
for the system kernel running in supervisor state or in protection key zero.

v Variable spanned format record (VS or VBS) are not supported for a partitioned
data set.

v Shared or in use data sets should not be compressed in place or updated unless
the subject data set is made nonsharable. See “Sharing Data Sets” on page 6.

v When a PDSE is involved and only a small amount of virtual storage is available
to the PDSE processing routines, then messages about the shortage might only
appear on the console and not in the SYSPRINT data set.

v Load modules having the downward compatible (DC) linkage editor attribute will
be reblocked to a maximum block size of 1024 (1K) when encountered during
COPYMOD processing, regardless of the number specified on the MINBLK and
MAXBLK parameters.

v Reblocking cannot be performed if either the input or the output data set has:
– undefined format records
– keyed records
– track overflow records
– note lists or user TTRNs

IEBCOPY

34 z/OS V2R13.0 DFSMSdfp Utilities

or if compress-in-place is specified. (Load modules, with undefined record
formats and note lists, may be reblocked using the COPYMOD statement.)

v The compress-in-place function cannot be performed for the following:
– Unload data sets
– Data sets with track overflow records
– Data sets with keyed records
– Unmovable data sets
– PDSEs (request is ignored).

v PDSEs cannot contain members with note lists, keys, or track overflow. You
cannot mix load modules and nonload modules in the same PDSE.

v Using OPTCD=W for any DASD could dramatically slow down a COPY
operation. OPTCD is in the data set label, and therefore can be active when
OPTCD is not coded on the DD statement.

v OPTCD=W will only be honored when coded in the JCL. OPTCD=W, if present in
the data set label, will be deleted from the label.

Note: If IEBCOPY copies a record which is physically longer than the block size of
the output partitioned data set, message IEB175I (return code 4) is issued to
warn you that the data set contains fat blocks, which are physical records
created in the data set that are longer than the BLKSIZE in the data set
label.

v COPYMOD size limits

– The load modules used as input cannot have more than 60 CSECTS in a
single textblock.

– Overlay load modules cannot have more than 255 segments.

v IEBCOPY user TTR limits

– There are up to three user TTRN fields in the directory.

– Only one of these fields may have n>0.

– The maximum length of the note list record identified by the user TTRN with
n>0 is 1291 bytes including any block and record descriptor word.

– No TTRN fields in a note list record may have n>0.

v A load module from an unload data set cannot be reloaded into a PDSE as a
program object. The load modules should be reloaded into a partitioned data set
and then the partitioned data set should be copied to a PDSE to convert the
unloaded load module into a program object.

v IEBCOPY size limits

– The maximum number of renames allowed on all SELECT or EXCLUDE
cards for one copy operation is (2 * max_trk) / 16, where “max_trk” is the
cylinder length of the larger device used in the copy operation. For a 3380,
this limit is about 5925. For a 3390 the limit is about 7050, and for a 9345, the
limit is about 5800.

– Do not use a PDSU block size smaller than the PDS block size +20.

– SYSUT4 space must be a single contiguous extent.

Control
IEBCOPY is controlled by JCL and utility control statements.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 35

Job Control Statements
Table 9 shows the job control statements for IEBCOPY.

Table 9. Job Control Statements for IEBCOPY

Statement Use

JOB Starts the job.

EXEC Starts IEBCOPY.

SYSPRINT DD Defines a sequential data set used for listing control statements and
messages.

SYSUT1 or
anyname1 DD

Defines a partitioned data set or unload data set for input. A partitioned
data set must reside on DASD or be a VIO data set. The unload data
set is a sequential data set created as the result of an unload operation
and may reside on DASD or tape or any other device supported by the
QSAM access method.

SYSUT2 or
anyname2 DD

Defines a partitioned data set or unload data set for output. A
partitioned data set must reside on DASD or be a VIO data set. The
unload data set is a sequential data set that was created as the result
of an unload operation and may reside on DASD or tape or any other
device supported by the QSAM access method.

SYSUT3 DD Defines a spill data set on a DASD or VIO device. SYSUT3 is used
when there is no space in virtual storage for some or all of the current
input data set directory entries.

SYSUT4 DD Defines a spill data set on a DASD or VIO device. SYSUT4 is used
when there is no space in virtual storage for the output data set
directory.

SYSIN DD Defines the optional control data set.

EXEC Statement
The syntax of the EXEC statement is:

//[stepname] EXEC [,PGM=IEBCOPY.

[,REGION={n|nK|nM}]
[,PARM=<parms>]

where:

PGM=IEBCOPY
specifies that you want to run the IEBCOPY program.

REGION={n|nK|nM}
specifies the amount of storage to be made available to IEBCOPY by the
operating system. Specify 1M if you are only using partitioned data sets. If you
are using any PDSE, then specify 2M.

Notes:

1. The number n can be any number of digits, and is specified in decimal. The
K causes the number to be multiplied by 1024 bytes (1 kilobyte) and M
causes the number to be multiplied by 1024K or 1048576.

2. Specifying a larger REGION size might not have an effect unless the
WORK= value is also increased.

3. Specifying a REGION size on the JOB statement will override any REGION
specified on the EXEC statement.

IEBCOPY

36 z/OS V2R13.0 DFSMSdfp Utilities

PARM=
You may specify any of the parameters below in any order to IEBCOPY.
Separate multiple parameters with a comma between each one.

CMWA=nK
Specify this parameter to increase the COPYMOD work area size of 120K if
larger load modules are being processed. This will be evident because
message IEB1133E will be issued in this instance.

COMPRESS
If you direct IEBCOPY to generate a control statement, specify this
parameter to make the control statement perform a compress-in-place
operation instead of a COPY operation. See “Avoiding the Need to Supply
Control Statements” on page 33.

COPY
If you wish to direct IEBCOPY to generate a control statement, specify this
parameter to make the control statement perform a COPY operation. See
“Avoiding the Need to Supply Control Statements” on page 33.

COPYGRP
If you wish to direct IEBCOPY to generate a control statement, specify this
parameter to make the control statement perform a COPYGRP operation.
See “Avoiding the Need to Supply Control Statements” on page 33.

COPYMOD
If you wish to direct IEBCOPY to generate a control statement, specify this
parameter to make the control statement perform a COPYMOD operation.
See “Avoiding the Need to Supply Control Statements” on page 33.

LC=n
LPP=n
LINECOUNT=n

n is the number of lines, including headings, to print on each page of the
SYSPRINT output listing. Default is 60.

LIST=NO
LIST=YES

sets the default value for the LIST= operand when it is omitted from the
COPY, COPYMOD, or ALTERMOD statement. Default is LIST=YES.

RC4NOREP
Use of this parameter will cause IEBCOPY to set a return code of X’04’
when a module is not copied from the source data set to the target data set
because REPLACE was not specified. When ’RC4NOREP’ is specified,
message IEB1067W will be issued for each module NOT copied due to the
REPLACE option not being specified. Note: Message IEB1067W will be
issued regardless of the LIST option requested.

REPLACE
If you wish to direct IEBCOPY to generate a control statement, specify this
parameter to make the control statement perform a copy with replace
operation. See “Avoiding the Need to Supply Control Statements” on
page 33.

SIZE={n|nK|nM}
specifies the maximum number of bytes of virtual storage that IEBCOPY
may use as a buffer.

It is best to let IEBCOPY choose buffer sizes by not using this parameter.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 37

The minimum buffer size is approximately 4 times the largest track size of
the devices being used, plus about 3%. There is no maximum for this value,
but IEBCOPY cannot use more than the quantity available in the work area.

The number n can be any number of digits, and is specified in decimal. The
K causes the number to be multiplied by 1024 bytes (1 kilobyte) and M
causes the number to be multiplied by 1024K or 1048576.

See “How IEBCOPY Allocates Tables and Buffers” on page 32.

SPCLCMOD

specifies that when a member is found to be ineligible for COPYMOD,
processing (for example, the module is page aligned) and the module is
scheduled for processing as a normal COPY, the detection of a record
larger than the blocksize of the target data set will cause the entire
operation to be terminated (no fat blocks will be created).

If the COPY operation resulting from COPYMOD ineligibility is successful,
the return code of the operation will be set to zero instead of four (normally
return code is set to 4 to indicate that a COPY instead of a COPYMOD was
done for the affected modules, if LIST=YES is in effect).

WORK={n|nK|nM|1M}
specifies the number of bytes of virtual storage to request for a work area
to hold directory entries, internal tables, and I/O buffers. The default request
will be for 1M. The actual amount obtained will not exceed the space
available in the REGION.

The number n can be any number of digits, and is specified in decimal. The
K causes the number to be multiplied by 1024 bytes (1 kilobyte) and M
causes the number to be multiplied by 1024K or 1048576.

See “How IEBCOPY Uses Virtual Storage for Tables and Buffers” on
page 32.

SYSPRINT DD Statement
IEBCOPY writes a log of the control statements and its actions to the SYSPRINT
DD statement. IEBCOPY proceeds if SYSPRINT is unusable and issues summary
messages to the console.

You may assign SYSPRINT to SYSOUT or to any QSAM data set. These are the
valid DCB parameters you may specify:

DSORG=PS
The output always has sequential organization.

RECFM=[F|FB|V|VB|FA|FBA|VA|VBA]
The record format may be fixed, fixed blocked, and variable or variable
blocked. Any of these record formats can be specified to include ISO/ANSI
control characters (for example, VBA instead of VB).

LRECL=
The minimum logical record length that you may specify is 60 for fixed
length, or 64 for variable length. The maximum is 250.

BLKSIZE=
If you are using fixed blocked records, the block size may be any multiple
of the logical record length. If you are using variable or variable blocked
records, the block size must be a minimum of the logical record length plus
four. The block size cannot exceed 32760 bytes.

IEBCOPY

38 z/OS V2R13.0 DFSMSdfp Utilities

If you do not specify anything for DCB parameters, and the data set label has no
DCB parameters, IEBCOPY will choose RECFM=FBA, LRECL=121, and a block
size. When the output device is DASD or a standard labeled tape, the system will
determine the block size to be used. When the output device is not DASD or a
standard labeled tape, IEBCOPY will use the largest value that will work for the
specific device, adjusted as needed for the RECFM.

If you specify any parameters other than those that IEBCOPY would choose,
IEBCOPY will adapt to them. It will choose a variable format record if you omit the
RECFM, and it will choose a LRECL and BLKSIZE consistent with the RECFM and
any LRECL or BLKSIZE that you give it.

Tip: Giving LRECL a value that is 1-byte less than the width of your TSO terminal
will allow you to view entire records from a listing without scrolling left or right.

SYSUT1 (anyname1) and SYSUT2 (anyname2) DD Statements
DD statements are required for input and output data sets. There must be one DD
statement for each unique data set used in the job step. You must specify a unique
output DD statement (for the unload data set) for every input data set that you
unload. You cannot unload multiple data sets to the same unload data set.

Data sets that are used as input data sets in one copy operation can be used as
output data sets in another copy operation.

Input data sets cannot be concatenated together on the same DD statement.

Fixed or variable records can be reblocked, but you cannot convert fixed format
records into variable format records, or variable format records into fixed format
records. Reblocking or deblocking is performed automatically when the block size of
the input data set is not equal to the block size of the output data set.

For variable format data sets, the output LRECL must be greater than or equal to
the input LRECL. For fixed format data sets the input and output LRECL must
match. For undefined format data sets, the output BLKSIZE must be greater than or
equal to the input BLKSIZE, and any LRECL is ignored.

A PDSE might require somewhat more space than a partitioned data set requires to
hold the same data. When copying from a partitioned data set to a PDSE,
IEBCOPY will override a secondary space allocation of zero for the output PDSE,
rather than stop the job. The copy will obtain any additional space it requires in one
unit increments of the primary allocation (tracks, cylinders, or blocks). The
secondary space quantity in the data set label will not be changed.

When IEBCOPY must supply DCB parameters for the output data set, it will use the
corresponding values from the input data set. In particular, system determined block
size will not be used for the output data set block size, nor will the system
determined block size or reblockable flags be set in the output data set label.

You should allow IEBCOPY to choose the DCB parameters for an unload data set.
If you must specify a block size, specify a value that is at least 20 bytes greater
than the input data set block size. (This will avoid creating spanned records in the
unload data set.) See “IEBCOPY Unload Data Set DCB Parameters” on page 24 for
more information.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 39

OPTCD=W may be used to request write verification of the data written and causes
DASD cached controllers (for instance, 3880-21, 3990-3) to perform a “write
through” operation.

Starting with ESCON support, OPTCD=W also causes a different set of channel
programs to be used for writing to ECKD™ capable DASD and for reading from all
DASD. These programs could run much slower than the default ones; therefore,
there is a significant performance cost for using OPTCD=W.

The write verification requested by OPTCD=W is usually unnecessary, because
extensive error recovery occurs in both hardware and error recovery procedures
(ERP) used by the MVS I/O supervisor. OPTCD=W does not cause the data read
from the device to be compared with the data in virtual storage and cannot detect
data garbled in transmission from virtual storage to the device control unit.
OPTCD=W causes the control unit to read data from the device (after it has been
written) to validate the error checking codes stored with the data.

SYSUT3 and SYSUT4 DD statements
In most uses of IEBCOPY, you do not need to provide space on spill data sets
(SYSUT3 and SYSUT4). If IEBCOPY is running in a region size of 2M or more,
neither of the spill data sets are needed if the output data set will have fewer than
1600 directory blocks.

In order to conserve space on DASD, you can use VIO for these data sets.
However, it is more efficient to increase the region size (and WORK=parameter
value) and not use the SYSUT3 and SYSUT4 data sets at all. You cannot use
multivolume data sets for these data sets.

The space required for SYSUT3 depends on the number of members to be copied
or loaded. The space to be allocated for SYSUT4 must be equal to or greater than
the number of blocks allocated to the largest output partitioned data set directory in
the IEBCOPY jobstep. Use a block size of 80 to calculate space requirements.

The space required depends on the number of directory blocks to be written to the
output data set. SYSUT4 is only used if more than one data set is specified on a
given INDD list. The data set contains one directory block per data block. Use a
block size of 256 and a key length of 8 to calculate space requirements.

Requirement: SYSUT4 must be in a single contiguous extent, because SYSUT4
will contain a copy of the output partitioned data set directory. The design of data
management requires that a partitioned data set directory be within a single extent.

IEBCOPY ignores all DCB information that is specified for SYSUT3 or SYSUT4.

SYSIN DD Statement
The SYSIN DD statement is optional. If it is omitted, or a DUMMY data set, or an
empty data set, IEBCOPY will generate a control statement using options in the
PARM field.

SYSIN will not be opened if COPY, COPYMOD, REPLACE, or COMPRESS
appears in the PARM field.

If you are copying, loading, or unloading a single data set, or wish to compress a
data set in place, you can avoid using utility control statements by using SYSUT1
for the input data set and SYSUT2 for the output data set. See “Avoiding the Need
to Supply Control Statements” on page 33 for details.

IEBCOPY

40 z/OS V2R13.0 DFSMSdfp Utilities

Either fixed, variable, or undefined record format is acceptable, as is any BLKSIZE
and LRECL consistent with the record format and each other. If the record format
indicates carriage controls, the carriage control character in each record is ignored.

Sequence numbers are optional. IEBCOPY will look for sequence numbers (8 digits
long) at the front of variable format records and at the end of fixed format records. If
IEBCOPY finds them in the first control statement, it will ignore those columns in all
control statements.

Utility Control Statements
IEBCOPY is controlled by the utility control statements in Table 10.

Table 10. IEBCOPY Utility Control Statements. The minor statements (SELECT or
EXCLUDE) can follow each major statement to restrict the scope of the major statements.

Statement Use

Major Statements

ALTERMOD Indicates the beginning of an alter-in-place operation for load modules.

COPY Indicates the beginning of a COPY operation.

COPYGRP Indicates the beginning of a COPYGRP operation.

COPYMOD Indicates the beginning of a copy and load module reblock operation.

INDD= Indicates the beginning of another copy step.

Minor Statements

EXCLUDE Specifies members in the input data set to be excluded from the copy
step.

SELECT Specifies which members in the input data set are to be copied.

Abbreviations
COPY will accept the first letter as an abbreviation for all its key words, except
MINBLK. COPYMOD may be abbreviated CM. COPYGRP may be abbreviated CG.

Continuation
To continue the copy control statement, stop at a comma. Put any nonblank
character in column 72 and start in column 16 on the next record.

Comments
To make a comment statement, place an asterisk (*) in the left column where the
label field goes. The record will be printed, then ignored. You may also place a
comment on any control statement which also has an operand. Leave 1 or more
spaces after the operand, and then start your comment.

Determining the IEBCOPY Operation to Be Performed
v To request a COPY operation, specify partitioned data sets as input and output.

v To request an UNLOAD operation, specify a partitioned input data set and a
sequential output data set.

v To request a LOAD operation, specify a sequential input data set and a
partitioned output data set.

Scope of Operation
IEBCOPY uses a copy operation/copy step concept. A copy operation starts with a
COPY, COPYGRP, COPYMOD, or ALTERMOD statement, and continues until
another COPY, COPYGRP, COPYMOD, or ALTERMOD statement is found, or the

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 41

end of the control data set is found. Within each copy operation, one or more copy
steps are present. Any INDD statement directly following a SELECT or EXCLUDE
statement marks the beginning of the next copy step and the end of the preceding
copy step within the copy operation. If such an INDD statement cannot be found in
the copy operation, the copy operation will consist of only one copy step.

Table 11 shows the copy operation/copy step concept. Two copy operations are
shown in the figure. The first begins with the statement named COPOPER1, and
the second begins with the statement named COPOPER2.

Table 11. Multiple Copy Operations within a Job Step

First Copy Operation
STEP 1 COPOPER1 COPY OUTDD=AA

INDD=ZZ
INDD=(BB,CC)
INDD=DD
INDD=EE

SELECT MEMBER=(MEMA,MEMB)
SELECT MEMBER=(MEMC)

STEP 2 INDD=GG
INDD=HH

EXCLUDE MEMBER=(MEMD,MEMH)

Second Copy Operation
STEP 1 COPOPER2 COPY OUTDD=YY

INDD=(MM,PP)
LIST=NO

SELECT MEMBER=MEMB

STEP 2 INDD=KK
INDD=(LL,NN)

The first copy operation shown in Table 11 is copying two groups of members. The
first begins with the COPY statement and continues through the two SELECT
statements. The second begins with the first INDD statement following the two
SELECT statements and continues through the EXCLUDE statement preceding the
second COPY statement.

The second copy operation has two steps. The first step begins with the COPY
statement and continues through the SELECT statement. The second begins with
the INDD statement immediately following the SELECT statement.

ALTERMOD Statement
The ALTERMOD statement is required to alter load modules in place. ALTERMOD
will only work with a partitioned data set, not a PDSE.

The syntax of the ALTERMOD statement is:

[label] ALTERMOD OUTDD=DDname
[,LIST={YES|NO}]

where:

IEBCOPY

42 z/OS V2R13.0 DFSMSdfp Utilities

OUTDD=DDname
specifies the ddname of the partitioned data set that is to be altered.

LIST={YES|NO}
specifies whether the names of the altered members are to be listed in the
SYSPRINT data set. When this parameter is omitted, the default from the
EXEC PARM field applies.

COPY Statement
Use the COPY statement to begin one or more copy, unload, or load operations.
Any number of operations can follow a single COPY statement; any number of
COPY statements can appear within a single job step.

The syntax of the COPY statement is:

[label] COPY OUTDD=DDname
,INDD=[(]{DDname|(DDname,R) }[,...][)] [,LIST={YES|NO}]

where:

OUTDD=DDname
specifies the name of a DD statement that locates the output data set.

INDD=[(]{DDname| (DDname,R)}[,...][)]
specifies the names of DD statements that locate the input data sets.

When an INDD= appears in a record by itself (that is, not with a COPY
keyword), it functions as a control statement and begins a new step in the
current COPY operation.

These values can be coded:

DDname
the ddname of the DD statement for the input data set. For an unload
operation, only one ddname should be specified per COPY statement. If
more than one ddname is specified for a copy or load operation, the input
data sets are processed in the same sequence as the ddnames are
specified.

R specifies that all members to be copied or loaded from this input data set
are to replace any identically named members on the output partitioned
data set. (In addition, members whose names are not on the output data
set are copied or loaded as usual.) When this option is specified, the
ddname and the R parameter must be enclosed in a set of parentheses; if it
is specified with the first ddname in INDD, the entire field, exclusive of the
INDD parameter, must be enclosed in a second set of parentheses.

LIST={YES|NO}
specifies whether the names of copied members are to be listed in the
SYSPRINT data set at the end of each input data set. When this parameter is
omitted, the default from the EXEC PARM field applies.

Usage Notes for COPY: The control statement operation and keyword
parameters can be abbreviated to their first letters; for example, COPY can be
abbreviated to C and OUTDD can be abbreviated to O.

If there are no keywords other than OUTDD on the COPY record, comments may
not be placed on the record.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 43

You can use COPY to copy and reblock data sets with fixed-blocked or
variable-blocked records. You cannot use COPY to reblock undefined records or
load module libraries. Instead, use COPYMOD to copy and reblock a load library.

Only one INDD and one OUTDD keyword may be placed on a single record.
OUTDD must appear on the COPY statement. When INDD appears on a separate
record, no other operands may be specified on that record, and INDD is not
preceded by a comma.

A COPY statement must precede SELECT or EXCLUDE statements when
members are selected for or excluded from a copy, unload, or load step. In addition,
if an input ddname is specified on a separate INDD statement, it must follow the
COPY statement and precede the SELECT or EXCLUDE statement which apply to
it.

COPYGRP Statement
Use the COPYGRP statement to begin a group copy, unload, or load. A group
consists of a member and all of its aliases. COPYGRP treats the group as a single
entity.

The syntax of the COPYGRP statement is:

[label] COPYGRP OUTDD=DDname
,INDD={DDname|((DDname,R))} [,LIST={YES|NO}]

where:

OUTDD=DDname
specifies the name of a DD statement that locates the output data set.

INDD={DDname| ((DDname,R))}
specifies the name of a DD statement that locates the input data set.

Restriction: Multiple INDD statements are not allowed for COPYGRP.

These values can be coded:

DDname
specifies the ddname, which is specified on a DD statement, of an input
data set.

R specifies that a group to be copied or loaded from this input data set is to
replace a group in the output data set. When this option is specified, the
ddname and the R parameter must be enclosed in a set of parentheses;
and the entire field, except the INDD parameter, must be enclosed in a
second set of parentheses.

LIST={YES|NO}
specifies whether the names of copied members are to be listed in the
SYSPRINT data set at the end of each input data set. When this parameter is
omitted, the default from the EXEC PARM field applies.

Usage Notes for COPYGRP: The control statement can be abbreviated to CG.
Only one input ddname can be used per COPYGRP control statement.

The INDD and OUTDD keyword must appear on the COPYGRP statement.

IEBCOPY

44 z/OS V2R13.0 DFSMSdfp Utilities

A COPYGRP statement must precede the SELECT statement when members are
selected for a copy, unload, or load step. A SELECT statement following a
COPYGRP cannot contain the R (replace) parameter.

An EXCLUDE statement cannot follow a COPYGRP statement.

COPYMOD Statement
Use the COPYMOD statement to copy load module libraries that you want to
reblock. The output data set must be partitioned. The input data set may be a
partitioned or a sequential data set created by an unload operation. If the input to
COPYMOD is not a valid load module, COPYMOD functions as a COPY.

The syntax of the COPYMOD statement is:

[label] COPYMOD OUTDD=DDname

,INDD=[(]{DDname|(DDname,R) }[,...][)]
[,MAXBLK={nnnnn|nnK}]
[,MINBLK={nnnnn|nnK}]
[,LIST={YES|NO}]

where:

OUTDD=DDname
specifies the name of a DD statement that locates the output data set.

INDD=[(]{DDname| (DDname,R)}[,...][)]
specifies the names of DD statements that locate the input data sets.

When an INDD=appears in a record by itself (that is, not with a COPY
keyword), it functions as a control statement and begins a new step in the
current copy operation.

These values can be coded:

DDname
specifies the ddname, which is specified on a DD statement, of an input
data set which is a load module library.

R specifies that all members to be copied from this input data set are to
replace any identically named members on the output load module library.
(In addition, members whose names are not on the output data set are
copied as usual.) When this option is specified, the ddname and the R
parameter must be enclosed in a set of parentheses; if it is specified with
the first ddname in INDD, the entire field, exclusive of the INDD parameter,
must be enclosed in a second set of parentheses.

MAXBLK={nnnnn|nnK}
specifies the maximum block size for records in the output partitioned data set.
MAXBLK is normally used to specify a smaller block size than the default, in
order to make the record length of the data set compatible with different devices
or programs.

The nnnnn value is specified as a decimal number; K indicates that the nn
value is to be multiplied by 1024 bytes.

MAXBLK may be specified with or without MINBLK. Specifiying a MAXBLK that
is larger than the blocksize of the target data set will change the data set
blocksize to the MAXBLK value.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 45

Default: The COPYMOD MAXBLK parameter defaults to the output data set
block size. If the output data set block size is zero, it defaults to the input data
set block size.

MINBLK={nnnnn|nnK}
specifies the minimum block size for records in the output partitioned data set.
MINBLK specifies the smallest block that should be written on the end of a
track.

The MINBLK keyword is provided for compatibility with earlier MVS releases in
which a larger, less-than-track-size MINBLK value could enhance program fetch
performance for the module. Under normal circumstances, MINBLK should not
be specified.

The nnnnn value is specified as a decimal number; K indicates that the nn
value is to be multiplied by 1024 bytes.

MINBLK may be specified with or without MAXBLK.

Default: 1K (1024). If a value greater than MAXBLK is specified, MINBLK is set
to the MAXBLK value actually used (whether specified or defaulted). If a value
less than 1K is specified, MINBLK is set to 1K.

LIST={YES|NO}

specifies whether the names of copied members are to be listed in the
SYSPRINT data set at the end of each input data set. When this parameter is
omitted, the default from the EXEC PARM field applies.

INDD=Statement
In addition, when INDD, a COPY statement parameter, appears on a record other
than the COPY statement, it is referred to as an INDD statement. It functions as a
control statement in this context.

If one or more INDD statements are immediately followed by end of file or another
COPY or COPYMOD or ALTERMOD statement, a full copy, unload, or load
operation is completed using the most recent previously specified output data set.

EXCLUDE Statement
The EXCLUDE statement specifies members to be excluded from the copy, unload,
or load step. All members in the input data set except those specified on each
EXCLUDE statement are included in the operation. More than one EXCLUDE
statement may be used in succession, in which case, the second and subsequent
statements are treated as a continuation of the first.

The EXCLUDE statement must follow either a COPY statement, an ALTERMOD, a
COPYMOD statement, or one or more INDD= statements. An EXCLUDE statement
cannot appear with a SELECT statement in the same copy, unload, or load step.
The EXCLUDE statement cannot be used with a compress-in-place or COPYGRP.

If neither SELECT nor EXCLUDE is specified, the entire data set is copied (a “full
copy”).

The syntax of the EXCLUDE statement is:

[label] EXCLUDE MEMBER=[(]name1[,name2][,...][)]

where:

IEBCOPY

46 z/OS V2R13.0 DFSMSdfp Utilities

MEMBER=[(]name1[, name2][,...][)]
specifies members on the input data set that are not to be copied, unloaded, or
loaded to the output data set. The members are not deleted from the input data
set.

The control statement operation and keyword parameters can be abbreviated to
their first letters; EXCLUDE can be abbreviated to E and MEMBER can be
abbreviated to M.

Each member name on an EXCLUDE statement must be unique.

SELECT Statement
The SELECT statement specifies members to be selected from input data sets to
be altered, copied, loaded, or unloaded to an output data set. This statement is also
used to rename or replace selected members on the output data set. More than
one SELECT statement may be used in succession, in which case the second and
subsequent statements are treated as a continuation of the first.

The SELECT statement must follow either a COPY statement, a COPYGRP
statement, a COPYMOD statement, or one or more INDD statements. A SELECT
statement cannot appear with an EXCLUDE statement in the same copy, unload, or
load step, and it cannot be used with a compress-in-place function.

When a selected member is found on an input data set, it is not searched for again
in this copy step.

Each member name on a SELECT statement must be unique.

A selected member will not replace an identically named member in the output data
set unless the replace option is specified on either the data set or member level.
(For a description of replacing members, see “Replacing Members in a Data Set” on
page 26.) In addition, unless the replace option is specified, a renamed member will
not replace a member in the output data set that has the same new name as the
renamed member.

The syntax of the SELECT statement is:

[label] SELECT MEMBER=({name1|
(name1,newname1[,R])|
(name1,,R)}

[,{name2|
(name2,newname2[,R])|
(name2,,R)}][,...])

where:

MEMBER=({name|(name, newname[,R])|(name,,R)} [,...])
specifies the members to be selected from the input data set.

To rename a member, specify the old name of the member, followed by the new
name and, optionally, the R (replace) parameter. This group must then be
enclosed in parentheses.

To replace a member, specify the name of the member and the R parameter.
Two commas must separate the R from the member name, and the group must
be enclosed in parentheses.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 47

When any option within parentheses is specified anywhere in the MEMBER
field, the entire field, exclusive of the MEMBER keyword, must be enclosed in a
second set of parentheses.

The values that can be coded are:

name
identifies a specific member to be processed. All names and new names
specified in one copy step must be unique. You cannot duplicate either old
names, or new names, or both, under any circumstances. You cannot
rename A to B and B to C, because B will appear twice. You cannot specify
a name that is more than eight characters in length.

newname
specifies a new name for a selected member. Member names can consist
of A - Z, 0 - 9, or $ # @ _ , or {, and cannot be more than eight characters
in length. The member is copied, unloaded, or loaded to the output data set
using its new name. If the name already appears on the output partitioned
data set or PDSE, the member is not copied unless replacement is also
specified. Newname cannot be specified with ALTERMOD.

R specifies that the input member is to replace any identically named member
that exists on the output data set. If the input member’s name is identical to
any output member’s alias name, the name will refer to the new member
and not the old member.

R may not be coded with ALTERMOD or COPYGRP.

The control statement operation and keyword parameters can be abbreviated to
their first letters; for example, SELECT can be abbreviated to S and MEMBER can
be abbreviated to M.

IEBCOPY Examples
The following examples illustrate some of the uses of IEBCOPY. Table 12 can be
used as a quick-reference guide to IEBCOPY examples. The numbers in the
“Example” column refer to examples that follow.

Table 12. IEBCOPY Example Directory

Operation Device Comments Example

Alter in Place Disk Selected members are altered in place. 10

Convert to PDSE Disk Converts a partitioned data set to a PDSE. 13

COPY Disk Copies a full data set from one disk volume to another. 1

COPY Disk Copies three input data sets to an existing output data
set.

2

COPY Disk Copy a PDSE to a PDSE. 14

COPY Disk Selects members from two input data sets and copies
them to an existing output data set. One member
replaces an identically named member that already exists
on the output data set.

3

COPY Disks Selects, excludes, and copies members from input data
sets to one output data set. Illustrates multiple copy
operations.

6

COPY Disks Selects, excludes, and copies members from input data
sets to different output data sets. Illustrates multiple copy
operations.

7

IEBCOPY

48 z/OS V2R13.0 DFSMSdfp Utilities

Table 12. IEBCOPY Example Directory (continued)

Operation Device Comments Example

COPY Disks Copy a selected group by specifying an alias. 16

COPY Disks Copy an entire PDSE to a PDSE with the replace (R)
option.

15

COPY and
Compress-in-place

Disk Copies two input data sets to an existing output data set,
which is compressed in place. Copies and replaces all
members of one data set. Members on the output data
set have the same name as those replaced.

5

Copy and reblock Disk (3380) Copies a load library to devices with different optimal
block sizes. Reblocking must take place before the
member can be added to the load library.

11

Copy and reblock Disk (3380) Copies load library to devices having different block sizes.
Reblocks the library to size compatible with each device
to which the library will be copied, then copies to those
devices.

12

Load Tape and
Disk

Loads a sequential data set to disk. 8

Unload and
Compress-in-place

Disk and
Tape

Unloads a partitioned data set to a tape volume to create
a compressed backup copy.

4

Unload, Load, and COPY Disk and
Tape

Excludes, unloads, loads, and copies selected members. 9

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

Example 1: Copy an Entire Data Set
In this example, a partitioned data set (DATASET5) is copied from one disk volume
to another. Figure 3 on page 50 shows the input and output data sets before and
after processing.

//COPY JOB ...
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=DATASET5,UNIT=disk,VOL=SER=111113,
// DISP=SHR
//SYSUT2 DD DSNAME=DATASET4,UNIT=disk,VOL=SER=111112,
// DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2))

The control statements are discussed below:

v SYSUT1 DD defines a partitioned data set, DATASET5, that contains two
members (A and C).

v SYSUT2 DD defines a new partitioned data set, DATASET4, that is to be kept
after the copy operation. Five tracks are allocated for the data set; two blocks are
allocated for directory entries.

v Because the partitioned data set has only two members, SYSUT3 and SYSUT4
DD are not needed.

v Because the input and output data sets are identified as SYSUT1 and SYSUT2,
the SYSIN data set is not needed. The SYSUT1 data set will be copied in full to
the SYSUT2 data set. After the copy operation is finished, DATASET4 will contain
the same members that are in DATASET5. However, there will be no embedded,

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 49

unused space in DATASET4. If you are copying a PDSE, the processing is the
same, except that there is no embedded, unused space in a PDSE.

Example 2: Merge Four Data Sets
In this example, members are copied from three input partitioned data sets
(DATASET1, DATASET5, and DATASET6) to an existing output partitioned data set
(DATASET2). The sequence in which the control statements occur controls the
manner and sequence in which partitioned data sets are processed. Figure 4 on
page 51 shows the input and output data sets before and after processing.

Input

Output

DATASET5

DATASET4

Before copy
operation

After processing
DATASET5

Directory
A C

Unused

Unused

Members
C

A

Available

Available

Available

Directory
A C

Members
C

A

Figure 3. Copying a Partitioned Data Set—Full Copy

IEBCOPY

50 z/OS V2R13.0 DFSMSdfp Utilities

The example follows:
//COPY JOB ...
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//IN1 DD DSNAME=DATASET1,UNIT=disk,VOL=SER=111112,
// DISP=SHR
//IN5 DD DSNAME=DATASET5,UNIT=disk,VOL=SER=111114,
// DISP=OLD
//OUT2 DD DSNAME=DATASET2,UNIT=disk,VOL=SER=111115,
// DISP=(OLD,KEEP)
//IN6 DD DSNAME=DATASET6,UNIT=disk,VOL=SER=111117,
// DISP=(OLD,DELETE)
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSIN DD *
COPYOPER COPY OUTDD=OUT2

DATASET1 DATASET6

DATASET5

DATASET2

Output

Input

Directory
A B F

A

Unused

B

Available

Directory
B C D

D

C

Directory
A C

Unused

Unused

A

Directory
C E

C

Directory
A B C E F

C

F

A

B

Directory
A B C D E F

C

F

A

B

D

Directory
A B C D E F

C

F

A

B

D

Before copy
operation

After processing
DATASET1

After processing
DATASET6

After processing
DATASET5

Available
Available

Available

Available
Available Available

Member
F

Member
B

Member
C

Member
E

Member
E

Member
E

Member
E

Figure 4. Copying from Three Input Partitioned Data Sets

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 51

INDD=IN1
INDD=IN6
INDD=IN5

/*

The control statements are discussed below:

v IN1 DD defines a partitioned data set (DATASET1). This data set contains three
members (A, B, and F) in fixed format with a logical record length of 80 bytes
and a block size of 80 bytes.

v IN5 DD defines a partitioned data set (DATASET5). This data set contains two
members (A and C) in fixed blocked format with a logical record length of 80
bytes and a block size of 160 bytes.

v OUT2 DD defines a partitioned data set (DATASET2). This data set contains two
members (C and E) in fixed-block format. The members have a logical record
length of 80 bytes and a block size of 240 bytes.

v IN6 DD defines a partitioned data set (DATASET6). This data set contains three
members (B, C, and D) in fixed-block format with a logical record length of 80
bytes and a block size of 400 bytes. This data set is to be deleted when
processing is completed.

v SYSUT3 defines a temporary spill data set.

v SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPY statement and three INDD statements.

v COPY indicates the start of the copy operation. The OUTDD parameter specifies
DATASET2 as the output data set.

v The first INDD statement specifies DATASET1 as the first input data set to be
processed. All members (A, B and F) are copied to DATASET2.

v The second INDD statement specifies DATASET6 as the second input data set to
be processed. Processing occurs as follows:

1. Since replacement is not specified, members B and C, which already exist in
DATASET2, are not copied to DATASET2.

2. Member D is copied to DATASET2.

3. All members in DATASET6 are lost when the data set is deleted.

v The third INDD statement specifies DATASET5 as the third input data set to be
processed. No members are copied to DATASET2 because all exist in
DATASET2.

Example 3: Copy and Replace Selected Members of a Data Set
In this example, two members (A and B) are selected from two input partitioned
data sets (DATASET5 and DATASET6) and copied to an existing output partitioned
data set (DATASET1). Member B replaces an identically named member that
already exists on the output data set. Figure 5 on page 53 shows the input and
output data sets before and after processing.

IEBCOPY

52 z/OS V2R13.0 DFSMSdfp Utilities

//COPY JOB ...
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//OUT1 DD DSNAME=DATASET1,UNIT=disk,VOL=SER=111112,
// DISP=(OLD,KEEP)
//IN6 DD DSNAME=DATASET6,UNIT=disk,VOL=SER=111115,
// DISP=OLD
//IN5 DD DSNAME=DATASET5,UNIT=disk,VOL=SER=111116,
// DISP=(OLD,KEEP)
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSIN DD *
COPYOPER COPY OUTDD=OUT1

INDD=IN5,IN6
SELECT MEMBER=((B,,R),A)

/*

The control statements are discussed below:

v OUT1 DD defines a partitioned data set (DATASET1), which contains three
members (A, B and F).

v IN6 DD defines a partitioned data set (DATASET6), which contains three
members (B, C and D).

Output

DATASET1

Input

UnusedUnused
Unused

Available

AvailableAvailable

Directory
B C D

Directory
A B F

Directory
A B F

Directory
A B F

Member
B
D

C

AAA

B B

B

DATASET5 DATASET6

Before copy
operation

After processing
DATASET5 After processing

DATASET6

Member
F

Member
F

Member
F

Copy replacing
member B

Unused
Member

C

Unused

A

Available

Directory
A C

Old member B
not pointed to

Figure 5. Selective Copy with Replace specified on the Member Level

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 53

v IN5 DD defines a partitioned data set (DATASET5), which contains two members
(A and C).

v SYSUT3 and SYSUT4 DD define temporary spill data sets. One track is
allocated for each on a disk volume.

v SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPY statement, an INDD statement, and a SELECT
statement.

v COPY indicates the start of the copy operation. The use of a SELECT statement
causes a selective copy. The OUTDD parameter specifies DATASET1 as the
output data set.

v INDD specifies DATASET5 as the first input data set to be processed and
DATASET6 as the second input data set to be processed. Processing occurs as
follows:

1. Selected members are searched for on DATASET5.

2. Member A is found, but is not copied to DATASET1 because DATASET1
already has a member named “A”, and the replace option is not specified for
member A.

3. Selected members not found on DATASET5 are searched for on DATASET6.

4. Member B is found and copied to DATASET1, even though there is already a
DATASET1 member “B” in DATASET1, because the replace option is
specified for member B on the member level. The pointer in DATASET1’s
directory is changed to point to the new (copied) member B; thus, the space
occupied by the old member B is unused.

v SELECT specifies the members to be selected from the input data sets
(DATASET5 and DATASET6) to be copied to the output data set (DATASET1).

Example 4: Unload and Compress a Data Set
In this example, a partitioned data set is unloaded to a tape volume to create a
backup copy of the data set. If this step is successful, the partitioned data set is to
be compressed in place.

//SAVE JOB ...
//STEP1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=PARTPDS,UNIT=disk,VOL=SER=PCP001,
// DISP=OLD
//SYSUT2 DD DSNAME=SAVDATA,UNIT=tape,VOL=SER=TAPE03,
// DISP=(NEW,KEEP),LABEL=(,SL)
//SYSUT3 DD DSNAME=TEMP1,UNIT=disk,VOL=SER=111111,
// DISP=(NEW,DELETE),SPACE=(80,(60,45))
//SYSIN DD DUMMY
//STEP2 EXEC PGM=IEBCOPY,COND=(0,NE),PARM=’SIZE=500K’
//SYSPRINT DD SYSOUT=A
//COMPDS DD DSNAME=PARTPDS,UNIT=disk,DISP=OLD,
// VOL=SER=PCP001
//SYSUT3 DD DSNAME=TEMPA,UNIT=disk,VOL=SER=111111,
// DISP=(NEW,DELETE),SPACE=(80,(60,45))
//SYSIN DD *

COPY OUTDD=COMPDS,INDD=COMPDS
/*

The control statements are discussed below:

v SYSUT1 DD defines a partitioned data set (PARTPDS) that resides on a disk
volume and is assumed to have 700 members. The number of members is used
to calculate the space allocation on SYSUT3.

v SYSUT2 DD defines a sequential data set to hold PARTPDS in unloaded form.
Block size information can optionally be added; this data set must be NEW.

IEBCOPY

54 z/OS V2R13.0 DFSMSdfp Utilities

v SYSUT3 DD defines the temporary spill data set. The SYSUT4 data set is never
used for an unload operation.

v SYSIN DD defines the control data set. Because SYSIN is dummied and
SYSUT2 defines a sequential data set, all members of the SYSUT1 data set will
be unloaded to the SYSUT2 data set.

v The second EXEC statement marks the beginning of the compress-in-place
operation. The SIZE parameter indicates that the buffers are to be as large as
possible. The COND parameter indicates that the compress-in-place is to be
performed only if the unload operation was successful.

v COMPDS DD defines a partitioned data set (PARTPDS) that contains 700
members and resides on a disk volume.

v SYSUT3 DD defines the temporary spill data set to be used if there is not
enough space in main storage for the input data set’s directory entries. TEMPA
contains one 80-character record for each member.

v SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPY statement.

v COPY marks the beginning of the copy operation. Because the same DD
statement is specified for both the INDD and OUTDD operands, the data set is
compressed in place. If a PDSE is being used, this step will not be processed.

If you want to unload more than one data set in a single use of IEBCOPY, you must
use a separate COPY statement for each unload operation. Only one input data set
may be specified in an unload operation.

Example 5: Merge Data Sets and Compress the Merged Data Set
In this example, two input partitioned data sets (DATASET5 and DATASET6) are
copied to an existing output partitioned data set (DATASET1). In addition, all
members on DATASET6 are copied; members on the output data set that have the
same names as the copied members are replaced. After DATASET6 is processed,
the output data set (DATASET1) is compressed in place. Figure 6 on page 56
shows the input and output data sets before and after processing.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 55

//COPY JOB ...
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//INOUT1 DD DSNAME=DATASET1,UNIT=disk,VOL=SER=111112,
// DISP=(OLD,KEEP)
//IN5 DD DSNAME=DATASET5,UNIT=disk,VOL=SER=111114,
// DISP=OLD

Input

Output

DATASET1

DATASET5 DATASET6 DATASET1

Directory
A C

Member
C

A

Unused

Unused

Available

Directory
B C D

Member
B

D

C

Available

Directory
A B C D F

Member
F

A

B

D

C

Unused

All members
copied:
members B
and C replace
old identically
named members

Directory
A B F

Directory
A B C F

Directory
A B C D F

Directory
A B C D F

Member
F

Member
F

Member
F

Member
F

A

B

A

B

C

A

B

D

C

A

B

D

C

Unused Unused

Unused

Available

Available Available

Before copy
operation

After processing
DATASET5

After processing
DATASET6

After compressing
in place

Old
members

B and
C not

pointed to

Figure 6. Compress-in-Place Following Full Copy with “Replace” Specified

IEBCOPY

56 z/OS V2R13.0 DFSMSdfp Utilities

//IN6 DD DSNAME=DATASET6,UNIT=disk,VOL=SER=111115,
// DISP=(OLD,KEEP)
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSIN DD *
COPYOPER COPY OUTDD=INOUT1,INDD=(IN5,(IN6,R),INOUT1)
/*

The control statements are discussed below:

v INOUT1 DD defines a partitioned data set (DATASET1), which contains three
members (A, B and F).

v IN5 DD defines a partitioned data set (DATASET5), which contains two members
(A and C).

v IN6 DD defines a partitioned data set (DATASET6), which contains three
members (B, C and D).

v SYSUT3 and SYSUT4 DD define temporary spill data sets. One track is
allocated for each on a disk volume.

v SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPY statement.

v COPY indicates the start of the copy operation. The OUTDD operand specifies
DATASET1 as the output data set.

The INDD operand specifies DATASET5 as the first input data set to be
processed. It then specifies DATASET6 as the second input data set to be
processed. In addition, the replace option is specified for all members copied
from DATASET6. Finally, it specifies DATASET1 as the last input data set to be
processed. Since DATASET1 is also the output data set, DATASET1 is
compressed in place. However, if DATASET1 is a PDSE, the compress-in-place
operation will not be processed.

Processing occurs as follows:

1. Member A is not copied from DATASET5 into DATASET1 because it already
exists on DATASET1 and the replace option was not specified for
DATASET5.

2. Member C is copied from DATASET5 to DATASET1, occupying the first
available space.

3. All members are copied from DATASET6 to DATASET1, immediately
following the last member. Members B and C are copied even though the
output data set already contains members with the same names because the
replace option is specified on the data set level.

The pointers in DATASET1’s directory are changed to point to the new members
B and C. Thus, the space occupied by the old members B and C is unused. The
members currently on DATASET1 are compressed in place, thereby eliminating
embedded unused space.

Example 6: Multiple Copy Operations with One Output Data Set
In this example, members are selected, excluded, and copied from input partitioned
data sets onto an output partitioned data set. This example is designed to illustrate
multiple copy operations.

The example follows. Figure 7 on page 60 shows the input and output data sets
before and after processing.

//COPY JOB ...
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 57

//INOUTA DD DSNAME=DATASETA,UNIT=disk,VOL=SER=111113,
// DISP=OLD
//INB DD DSNAME=DATASETB,UNIT=disk,VOL=SER=111115,
// DISP=(OLD,KEEP)
//INC DD DSNAME=DATASETC,UNIT=disk,VOL=SER=111114,
// DISP=(OLD,KEEP)
//IND DD DSNAME=DATASETD,UNIT=disk,VOL=SER=111116,
// DISP=OLD
//INE DD DSNAME=DATASETE,UNIT=disk,VOL=SER=111117,
// DISP=OLD
//OUTX DD DSNAME=DATASETX,UNIT=disk,VOL=SER=111112,
// DISP=(NEW,KEEP),SPACE=(TRK,(3,1,2))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSIN DD *
COPERST1 COPY O=OUTX,I=INOUTA

COPY OUTDD=INOUTA,INDD=INOUTA
INDD=INB

COPY OUTDD=INOUTA
INDD=IND

EXCLUDE MEMBER=MM
INDD=INC

SELECT MEMBER=((ML,MD,R))
INDD=INE

/*

The control statements are discussed below:

v INOUTA DD defines a partitioned data, DATASETA, which contains seven
members (MA, MB, MC, MD, ME, MF and MG).

v INB DD defines a partitioned data set, DATASETB, which contains two members
(MA and MJ).

v INC DD defines a partitioned data set, DATASETC, which contains four members
(MF, ML, MM and MN).

v IND DD defines a partitioned data set, DATASETD, which contains two members
(MM and MP).

v INE DD defines a partitioned data set, DATASETE, which contains four members
(MD, ME, MF and MT).

v OUTX DD defines a partitioned data set (DATASETX). This data set is new and
is to be kept after the copy operation. Three tracks are allocated for the data set
on a disk volume. Two blocks are allocated for directory entries.

v SYSUT3 defines a temporary spill data set.

v SYSIN DD defines the control data set, which follows in the input stream. The
data set contains two COPY statements, several INDD statements, a SELECT
statement, and an EXCLUDE statement.

v The first COPY statement indicates the start of the first copy operation. This copy
operation is done to create a backup copy of DATASETA.

v The second COPY statement indicates the start of another copy operation. Since
DATASETA is specified in both the INDD and OUTDD parameters, DATASETA is
compressed in place.

The output data set is compressed in place first to save space because it is
known that it contains embedded, unused space.

The following INDD statement specifies DATASETB as the next input data set to
be copied. Only member MJ is copied, because DATASETA already contains a
member named “MA”.

v The third COPY statement indicates the start of the third copy operation. The
OUTDD parameter specifies DATASETA as the output data set. This copy
operation contains more than one copy step.

IEBCOPY

58 z/OS V2R13.0 DFSMSdfp Utilities

The first INDD statement specifies DATASETD as the first input data set to be
processed. Only member MP is copied to DATASETA because the EXCLUDE
statement specifies that member MM is to be excluded from the first copy step
within this copy operation.

The second INDD statement marks the beginning of the second copy step for
this copy operation and specifies DATASETC as the second input data set to be
processed. The SELECT statement specifies that member ML of DATASETC is
to be renamed “MD”, and that the new member will replace any member in
DATASETA that happens to be named “MD”. Member ML is searched for, found,
copied to DATASETA and renamed.

The third INDD statement marks the beginning of the third copy step for this copy
operation and specifies DATASETE as the last data set to be copied. Only
member MT is copied, because DATASETA already contains the other members.
Because the INDD statement is not followed by an EXCLUDE or SELECT
statement, a full copy is performed.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 59

Compress-in-Place Operation

Input DATASETA

DATASETA

DATASETB

Before copy
operation

After compressing
in place

After processing
DATASETB

Output

Unused

Unused

Unused

Unused

Unused

Unused

Unused

Unused

Available

Available

Available Available

Directory
MA MB MC MD

ME MF MG

MA MB MC MD
ME MF MG

Directory Directory Directory
MA MB MC MD

ME MF MG
MA MB MC MD
ME MF MG MJ

Directory
MA MJ

Member
MA

Member
MA

Member
MA

Member
MA

MB

MC

MD

ME

MF

MG

Member
MJ

MA

MB

MC

MD

ME

MF

MG

MB

MC

MD

ME

MF

MG

MB

MC

MD

MJ

MF

MG

ME

Figure 7. Multiple Copy Operations/Copy Steps (Part 1 of 2)

IEBCOPY

60 z/OS V2R13.0 DFSMSdfp Utilities

Example 7: Multiple Copy Operations with Different Output Data Sets
In this example, members are selected, excluded, and copied from input partitioned
data sets to an output partitioned data set. This example is designed to illustrate
multiple copy operations. Figure 8 on page 64 shows the input and output data sets
before and after processing.

Multiple Copy Steps

Input DATASETD DATASETC DATASETE

Output

Directory
MM MP

Directory
MF ML MM MN

Directory
MD ME MF MT

Member
MP

MM

Member
MM

Member
MD

ML

MF

MN

MT

MF

ME

Unused

Unused

Member ML
is copied, renamed
MD, and replaces
the old member
MD

Directory
MA MB MC MD
ME MF MG MJ

Directory
MA MB MC MD

ME MF MG
MJ MP

Directory
MA MB MC MD

ME MF MG
MJ MP

Directory
MA MB MC MD
ME MF MG MJ

MP MT

Member
MA

MB

MC

MD

ME

MF

MG

MJ

Member
MA

MB

MC

MD

ME

MF

MG

MJ

MP

Member
MA
MB

MC

ME

MF

MG

MJ

MP

MD

Member
MA

MB

MC

ME

MF

MG

MJ

MP

MD

MT

UnusedUnused

Available
Available

Available
Available

Before copy
operation

After processing
DATASETD

After processing
DATASETC After processing

DATASETE

Old
Member

Figure 7. Multiple Copy Operations/Copy Steps (Part 2 of 2)

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 61

The example follows:
//COPY JOB ...
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//OUTA DD DSNAME=DATASETA,UNIT=disk,VOL=SER=111113,
// DISP=OLD
//INOUTB DD DSNAME=DATASETB,VOL=SER=111115,UNIT=disk,
// DISP=(OLD,KEEP)
//INOUTC DD DSNAME=DATASETC,VOL=SER=111114,UNIT=disk,
// DISP=(OLD,KEEP)
//INOUTD DD DSNAME=DATASETD,VOL=SER=111116,DISP=OLD,
// UNIT=disk
//INE DD DSNAME=DATASETE,VOL=SER=111117,DISP=OLD,
// UNIT=disk
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSIN DD *

COPY OUTDD=OUTA
INDD=INE

SELECT MEMBER=(MA,MJ)
INDD=INOUTC

EXCLUDE MEMBER=(MM,MN)
COPY OUTDD=INOUTB,INDD=INOUTD

INDD=((INOUTC,R),INOUTB)
COPY OUTDD=INOUTD,INDD=((INOUTB,R))

SELECT MEMBER=MM
/*

The control statements are discussed below:

v OUTA DD defines a partitioned data set, DATASETA, which contains three
members (MA, MB and MD).

v INOUTB DD defines a partitioned data set, DATASETB, which contains two
members (MA and MJ).

v INOUTC DD defines a partitioned data set, DATASETC, which contains four
members (MF, ML, MM and MN).

v INOUTD DD defines a partitioned data set, DATASETD, which contains two
members (MM and MP).

v INE DD defines a partitioned data set, DATASETE, which contains three
members (MA, MJ and MK).

v SYSUT3 and SYSUT4 DD define temporary spill data sets. One track is
allocated for each on a disk volume.

v SYSIN DD defines the control data set, which follows in the input stream. The
data set contains three COPY statements, two SELECT statements, one
EXCLUDE statement, and several INDD statements.

v The first COPY statement indicates the start of a copy operation. The OUTDD
operand specifies DATASETA as the output data set.

The first INDD statement specifies DATASETE as the first input data set to be
processed. The SELECT statement specifies that members MA and MJ are to be
copied from DATASETE to DATASETA. Processing occurs as follows:
1. Member MA is searched for and found, but is not copied because the replace

option is not specified.
2. Member MJ is searched for, found, and copied to DATASETA.

The second INDD statement marks the end of the first copy step and the
beginning of the second copy step within the first copy operation. It specifies
DATASETC as the second input data set to be processed. Members MF and ML,
which are not named on the EXCLUDE statement, are copied because

IEBCOPY

62 z/OS V2R13.0 DFSMSdfp Utilities

DATASETA contains neither one of them. EXCLUDE specifies that members MM
and MN are not to be copied from DATASETC to DATASETA.

v The second COPY statement indicates the start of another copy operation. The
OUTDD parameter specifies DATASETB as the output data set. The INDD
parameter specifies DATASETD as the first input data set to be processed.
Members MP and MM are copied to DATASETB.

The next INDD statement specifies DATASETC as the second and DATASETB
as the third input data set to be processed. Members MF, ML, MM and MN are
copied from DATASETC. Member MM is copied, although DATASETB already
contains a member MM, because the replace option is specified.

The pointer in DATASETB’s directory is changed to point to the new (copied)
member MM. Thus, the space occupied by the replaced member MM is
embedded, unused space. DATASETB is then compressed in place to remove
embedded, unused space. (DATASETB is specified as both the input and output
data sets.)

v The third COPY statement indicates the start of the last copy operation. The
OUTDD parameter specifies DATASETD as the output data set. The INDD
parameter specifies DATASETB as the input data set.

SELECT specifies that member MM is to be copied from DATASETB to
DATASETD. Since the replace option is specified on the data set level, member
MM is copied and replaces DATASETDs member MM.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 63

Input

Output

DATASETA

DATASETE DATASETC

Directory
MA MJ MK

Member
MA

Directory
MF ML MM MN

Directory
MA MB MD

Directory
MA MB MD MJ

Directory
MA MB MD MF

Before copy
operation

After processing
DATASETE

After processing
DATASETC

First copy operation

Member
MF

MJ

MK

Available

Unused

Unused

ML

MN

MM

MJ ML

Member
MA

MB

MD

MJ

MF

ML

Available

Member
MA

MB

MD

MJ

Available

Available

Member
MA

MB

MD

Figure 8. Multiple Copy Operations/Copy Steps within a Job Step (Part 1 of 3)

IEBCOPY

64 z/OS V2R13.0 DFSMSdfp Utilities

Input

Output

DATASETB

DATASETD DATASETC

Directory
MM MP

Member
MP

Directory
MF ML MM MN

Directory
MA MJ

Directory
MA MJ MM MP

Directory
MA MF MJ ML
MM MN MP

Before copy
operation

After processing
DATASETD

Second copy operation

Member
MF

MM

Available

Unused

Unused

ML

MN

MM

Member
MA

MJ

MP

Unused

MF

ML

MN

Member
MA

MJ

MP

MM

Available

Available

Member
MA

MJ

MM

Directory
MA MF MJ ML
MM MN MP

Member
MA

MJ

MP

MF

ML

MN

MM

Avaliable

After compressing
in place

Old
member

DATASETB

Directory
MA MF MJ ML
MM MN MP

Member
MA

MJ

MP

MF

ML

MN

MM

Unused

After processing
DATASETC

Figure 8. Multiple Copy Operations/Copy Steps within a Job Step (Part 2 of 3)

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 65

Example 8: Loading a Data Set
In this example, a sequential data set that was created by an IEBCOPY unload
operation is loaded.

//LOAD JOB ...
//STEPA EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=UNLOADSET,UNIT=tape,LABEL=(,SL),
// VOL=SER=TAPE01,DISP=OLD
//SYSUT2 DD DSNAME=DATASET4,UNIT=disk,VOL=SER=2222222,
// DISP=(NEW,KEEP),SPACE=(CYL,(10,5,10))
//SYSUT3 DD DSN=TEMP1,UNIT=disk,VOL=SER=111111,
// DISP=(NEW,DELETE),SPACE=(80,(15,1))
//SYSIN DD DUMMY
/*

The control statements are discussed below:

Third copy operation

Input DATASETB

DATASETD

Output

Directory
MA MF MJ ML

MM MN MP

MJ

MP

MF

ML

MN

MM

Available

Available
Available

Unused

Directory
MM MP

Member
MP

Member
MP

Directory
MM MP

MM

Copy replacing
member MM

Before copy
operation

After processing
DATASETB

MM

Old
member

Member
MA

Figure 8. Multiple Copy Operations/Copy Steps within a Job Step (Part 3 of 3)

IEBCOPY

66 z/OS V2R13.0 DFSMSdfp Utilities

v SYSUT1 DD defines a sequential data set that was previously created by an
IEBCOPY unload operation. The data set contains 28 members in sequential
organization.

v SYSUT2 DD defines a new partitioned data set on a disk volume. This data set
is to be kept after the load operation. Ten cylinders are allocated for the data set;
ten blocks are allocated for directory entries.

v SYSUT3 DD defines a temporary spill data set on a disk volume.

v SYSIN DD defines the control data set. Because SYSIN is dummied, SYSUT1
defines a sequential data set, and SYSUT2 defines a partitioned data set, the
entire SYSUT1 data set will be loaded into the SYSUT2 data set.

Example 9: Unload Selected Members, Load, Copy and Merge
In this example, members are selected, excluded, unloaded, loaded, and copied.
Processing will occur as follows:

1. unload, excluding members

2. unload, selecting members

3. load and copy to merge members
//COPY JOB ...
//STEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//PDS1 DD DSNAME=ACCOUNTA,UNIT=disk,VOL=SER=333333,
// DISP=OLD
//PDS2 DD DSNAME=ACCOUNTB,UNIT=disk,VOL=SER=333333,
// DISP=OLD
//SEQ1 DD DSNAME=SAVAC,UNIT=disk,VOL=SER=333333,
// DISP=(NEW,KEEP),SPACE=(CYL,(5,2))
//SEQ2 DD DSNAME=SAVACB,UNIT=tape,VOL=SER=T01911,
// DISP=(NEW,KEEP),LABEL=(,SL)
//NEWUP DD DSNAME=NEWACC,UNIT=tape,VOL=SER=T01219,
// DISP=OLD,LABEL=(,SL)
//MERGE DD DSNAME=ACCUPDAT,UNIT=disk,VOL=SER=222222,
// DISP=OLD
//SYSUT3 DD DSNAME=TEMP1,VOL=SER=666666,UNIT=disk,
// DISP=(NEW,DELETE),SPACE=(80,(1,1))
//SYSUT4 DD DSNAME=TEMP2,VOL=SER=666666,UNIT=disk,
// DISP=(NEW,DELETE),SPACE=(256,(1,1)),DCB=(KEYLEN=8)
//SYSIN DD *

COPY OUTDD=SEQ1,INDD=PDS1
EXCLUDE MEMBER=(D,C)
COPY OUTDD=SEQ2,INDD=PDS2
SELECT MEMBER=(A,K)
COPY OUTDD=MERGE,INDD=((NEWUP,R),PDS1,PDS2)
EXCLUDE MEMBER=A

/*

The control statements are discussed below:

v PDS1 DD defines a partitioned data set called ACCOUNTA that contains six
members (A, B, C, D, E, and F).

v PDS2 DD defines a partitioned data set called ACCOUNTB that contains three
members (A, K, and L).

v SEQ1 DD defines a new sequential data set called SAVAC.

v SEQ2 DD defines a new sequential data set called SAVACB on a tape volume.
The tape has IBM standard labels.

v NEWUP DD defines an old sequential data set called NEWACC that is the
unloaded form of a partitioned data set that contains eight members (A, B, C, D,
M, N, O, and P). It resides on a tape volume.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 67

v MERGE DD defines a partitioned data set called ACCUPDAT that contains six
members (A, B, C, D, Q, and R).

v SYSUT3 and SYSUT4 DD define temporary spill data sets.

v SYSIN DD defines the control data set, which follows in the input stream.

v The first COPY statement indicates the start of the first copy operation. The
OUTDD parameter specifies that SAVAC is the output data set, and the INNDD
parameter specifies that ACCOUNTA is the input data set. Because SAVAC is a
sequential data set, ACCOUNTA will be unloaded in this copy operation.

The EXCLUDE statement specifies that members D and C are not to be
unloaded to SAVAC with the rest of ACCOUNTA.

v The second COPY statement indicates the start of the second copy operation.
The OUTDD parameter specifies that SAVACB is the output data set, and the
INDD parameter specifies that ACCOUNTB is the input data set. Because
SAVACB is a sequential data set, ACCOUNTB will be unloaded in this copy
operation.

The SELECT statement specifies that members A and K are the only members of
ACCOUNTB that are to be unloaded to SAVACB.

v The third COPY statement indicates the start of the last copy operation. The
OUTDD parameter specifies that ACCUPDAT is the output data set. The
EXCLUDE statement specifies that member A is excluded from this copy
operation. The three data sets specified in the INDD parameter will be processed
as follows:
1. The data set NEWACC is a sequential data set, so it is loaded into

ACCUPDAT. Because the replace option is specified, members B, C, and D
in NEWACC replace identically named members in ACCUPDAT. The
remaining members of NEWACC are also copied to ACCUPDAT, except for
A, which is excluded from the copy operation.

2. The data set ACCOUNTA is a partitioned data set, so its members are copied
to ACCUPDAT. Because replacement is not specified, only members E and F
are copied.

3. The data set ACCOUNTB is a partitioned data set, so its members are
copied to ACCUPDAT. Only members K and L are copied.

Example 10: Alter Load Modules in Place
In this example, all members of data set MODLIBJ, members MODX, MODY, and
MODZ of data set MODLIBK, and all members of data set MODLIBL, except
MYMACRO and MYJCL, are altered in place.

//ALTERONE JOB ...
//STEPA EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(5,1))
//LIBJ DD DSNAME=MODLIBJ,DISP=(OLD,KEEP)
//LIBK DD DSNAME=MODLIBK,DISP=(OLD,KEEP)
//LIBL DD DSNAME=MODLIBL,DISP=(OLD,KEEP)
//SYSIN DD *

ALTERMOD OUTDD=LIBJ
ALTERMOD OUTDD=LIBK,LIST=NO
SELECT MEMBER=(MODX,MODY,MODZ)
ALTERMOD OUTDD=LIBL
EXCLUDE MEMBER=(MYMACRO,MYJCL)

/*

The control statements are discussed below:

v LIBJ DD defines the partitioned data set MODLIBJ, which has been previously
created and cataloged.

IEBCOPY

68 z/OS V2R13.0 DFSMSdfp Utilities

v LIBK DD defines the partitioned data set MODLIBK, which has been previously
created and cataloged.

v LIBL DD defines the partitioned data set MODLIBL, which has been previously
created and cataloged.

v SYSIN DD defines the control data set, which follows in the input stream.

v The first ALTERMOD statement specifies that the entire data set defined in LIBJ
is to be altered in place.

v The second ALTERMOD statement plus the following SELECT statement
indicates that members MODX, MODY, and MODZ are to be altered in place.
The remainder of MODLIBK is unchanged.

v The third ALTERMOD statement plus the following EXCLUDE statement
indicates that all of MODLIBL is to be altered in place except the members called
MYMACRO and MYJCL. These members remain unchanged.

Example 11: Replace a Load Module Using COPYMOD
In this example, a load module in an existing load library is replaced by another
module. The new module originally resides on a 3390 DASD device, whereas the
load library to which it is copied resides on a 3380. Because the module has a
block size larger than the block size assigned to the output data set, the module
must be reblocked before it is added to the load library.

This example illustrates how you can transfer load modules between devices of
different sizes. In this case, updated modules are created on a 3390 and tested
before being added to the load library for general use.

//STEP1 EXEC PGM=IEBCOPY
//REPLACE JOB ...
//SYSPRINT DD SYSOUT=A
//TESTLIB DD DSN=JOHNDOE.COBOL.TESTLOAD,DISP=SHR,UNIT=3390,
// VOL=SER=TEST01,DCB=(BLKSIZE=23470)
//PRODLIB DD DSN=PAYROLL.MASTER.LOADLIB,DISP=(OLD,KEEP)
// UNIT=3380,VOL=SER=PROD01,DCB=(BLKSIZE=19069)
//SYSIN DD *

COPYMOD OUTDD=PRODLIB,INDD=TESTLIB
SELECT MEMBER=((WAGETAX,,R))

/*

The control statements are discussed below:

v TESTLIB DD defines a load library on a 3390 direct access device. It has a block
size of 23470.

v PRODLIB DD defines a load library on a 3380 direct access device. It has a
block size of 19069.

v SYSIN DD defines the control data set, which follows in the input stream.

v The COPYMOD statement identifies PAYROLL.MASTER.LOADLIB as the output
data set and JOHNDOE.COBOL.TESTLOAD as the input data set. The SELECT
statement indicates that the load module WAGETAX is to be copied from the
input data set and is to replace any member with that name that is in the output
data set. The member is also reblocked to 19069.

Note that, in this case, COPYMOD has to be used in order to copy the member
WAGETAX into the PAYROLL.MASTER.LOADLIB. Because the original block size
of WAGETAX is larger than the largest block size that can reside in the output data
set, attempting this operation with the COPY statement would be unsuccessful. The
problem would be attributed to a DCB validation error because of incorrect block
size.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 69

Example 12: Reblock Load Library and Distribute It to Different Device
Types

In this example, a load library is distributed (by copying it) to devices whose
maximum block size differs from that on which the original load library resides. The
library is first reblocked to a maximum block size that is compatible with each of the
devices to which the library will be copied. Then, the library is copied to those
devices.

This example illustrates how load libraries can be developed on one type of direct
access device and then distributed to other types of direct access devices.

//RBLKCOPY JOB ...
//REBLOCK EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//TESTED DD DSN=TESTED.MASTER.LOADLIB,DISP=SHR
//STDSIZE DD DSN=PROGRAM.MASTER.LOADLIB,DISP=(OLD,KEEP),
// UNIT=3390,VOL=SER=PROG01,DCB=(BLKSIZE=23470)
//SYSIN DD *

COPYMOD OUTDD=STDSIZE,INDD=TESTED,MAXBLK=13030
/*
//DISTRIB EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//STDSIZE DD DSN=PROGRAM.MASTER.LOADLIB,DISP=SHR
//LIB3350 DD DSN=PROGRAM.LIB3380.LOADLIB,DISP=(OLD,KEEP),
// UNIT=3380,VOL=SER=PACK01,DCB=(BLKSIZE=19069)
//LIB3330 DD DSN=PROGRAM.LIB3380.LOADLIB,DISP=(OLD,KEEP),
// UNIT=3380,VOL=SER=PACK02,DCB=(BLKSIZE=13030)
//SYSIN DD *

COPY OUTDD=LIB3380,INDD=STDSIZE
COPY OUTDD=LIB3380,INDD=STDSIZE

/*

The control statements are discussed below:

v The REBLOCK EXEC statement begins the reblocking step.

v TESTED DD defines the cataloged load library TESTED.MASTER.LOADLIB.

v STDSIZE DD defines an existing data set, PROGRAM.MASTER.LOADLIB, which
resides on a 3390 direct access device and has a block size of 23470.

v The COPYMOD statement in the SYSIN data set specifies that
TESTED.MASTER.LOADLIB is to be merged into
PROGRAM.MASTER.LOADLIB. It also specifies that
PROGRAM.MASTER.LOADLIB is to be reblocked with a maximum block size of
13030. This block size is chosen because it is small enough to fit on both 3380
and 3390 direct access devices.

v The DISTRIB EXEC statement begins the distribution step, where the reblocked
data set is copied to devices with different maximum block sizes.

v STDSIZE DD defines the same data set that was reblocked in the previous step.

v LIB3380 DD defines the data set PROGRAM.LIB3380.LOADLIB, which resides
on a 3380 direct access device.

v The COPY statements in the SYSIN data set specify that the data set
PROGRAM.MASTER.LOADLIB is to be copied to the output data sets without
being reblocked. If PROGRAM.MASTER.LOADLIB had not been reblocked to the
smaller block size, this step would end unsuccessfully.

IEBCOPY

70 z/OS V2R13.0 DFSMSdfp Utilities

Example 13: Convert a Partitioned Data Set to a PDSE
In this example, a partitioned data set is converted to a PDSE.

//CONVERT JOB ...
//STEP1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=PDSSET,DISP=SHR,DSNTYPE=PDS
//SYSUT2 DD DSNAME=PDSESET,LIKE=PDSSET,DSNTYPE=LIBRARY,
// DISP=(NEW,CATLG),STORCLAS=SCLASX,DATACLAS=DCLASY

The control statements are discussed below:

v SYSUT1 DD defines the input data set, PDS, which is a partitioned data set.The
DSNTYPE keyword has no effect because it is an existing data set.

v SYSUT2 DD defines the output data set, PDSE, which is a partitioned data set
extended. This new data set will be SMS-managed because it has a storage
class.

The LIKE parameter indicates that the DCB and SPACE attributes for PDSESET
are to be copied from PDSSET. The DSNTYPE parameter defines the new data
set as a PDSE rather than as a partitioned data set. DATACLAS=DCLASY
identifies the PPDSE as a program object PDSE with undefined logical record
length.

The Storage Management Subsystem chooses an appropriate volume for the
allocation, based on how SCLASX was defined.

v Since the ddnames “SYSUT1” and “SYSUT2” are used to define the input and
output data sets, no SYSIN data set is required.

Example 14: Copy Groups from a PDSE to a PDSE
In this example, members and their aliases (groups) are copied from a PDSE to a
PDSE (full data set copy). See “Copying Program Objects (COPYGRP Statement)”
on page 28 for information about copying groups.
//CPYGRP JOB ...
//STEP1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//DDIN DD DSNAME=PDSESETA,DISP=SHR
//DDOUT DD DSNAME=PDSESETB,LIKE=PDSESETA,DSNTYPE=LIBRARY,
// DISP=(NEW,CATLG)
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1,1))
//SYSIN DD *
GROUPCPY COPYGRP INDD=DDIN,OUTDD=DDOUT
/*

The control statements are discussed below:

v DDIN DD defines the input data set, PDSESETA, which is a partitioned data set
extended.

DDOUT DD defines the output data set, PDSESETA, which is a partitioned data
set extended.

The LIKE subparameter indicates that the DCB and SPACE attributes for
PDSESETB are to be copied from PDSESETA. The DSNTYPE subparameter
defines the new data set as a PDSE.

The Storage Management Subsystem chooses an appropriate volume for the
allocation.

v SYSUT3 DD defines a temporary spill data set.

v SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPYGRP statement, an INDD statement, and an OUTDD
statement.

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 71

v COPYGRP indicates the start of the copy operation.

The INDD parameter shows PDSESETA as the input data set.

The OUTDD parameter shows PDSESETB as the output data set.

Example 15: Copy Groups from a PDSE to a PDSE with Replace
In this example, members and their aliases are copied in groups from a PDSE to a
PDSE with the replace (R) option. See “Replacing Program Objects” on page 29 for
information about replacing groups with COPYGRP.

//CPYGRP JOB ...
//STEP1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//DDIN DD DSNAME=PDSESETA,DISP=SHR
//DDOUT DD DSNAME=PDSESETB,LIKE=PDSESETA,DSNTYPE=LIBRARY,
// DISP=(NEW,CATLG)
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1,1))
//SYSIN DD *
GROUPCPY COPYGRP INDD=((DDIN,R)),OUTDD=DDOUT
/*

The control statements are discussed below:

v DDIN DD defines the input data set, PDSE, which is a partitioned data set
extended.

DDOUT DD defines the output data set, PDSE, which is a partitioned data set
extended.

The LIKE parameter indicates that the DCB and SPACE attributes for
PDSESETB are to be copied from PDSESETA.

The DSNTYPE parameter defines the new data set as a PDSE.

The Storage Management Subsystem chooses an appropriate volume for the
allocation.

v SYSUT3 DD defines a temporary spill data set.

v SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPYGRP statement, an INDD statement, and an OUTDD
statement.

v COPYGRP indicates the start of the copy operation.

The ((INDD,R)) parameter shows PDSESETA as the input data set containing
members to replace members with the same name in PDSESETB.

The OUTDD parameter shows PDSESETB as the output data set.

Example 16: Copy a Selected Group from a PDSE to a PDSE
In this example, a selected member and its aliases are copied from a PDSE to a
PDSE. Either the member’s name or a maximum of eight characters can be given
on the SELECT statement. See “Copying Program Objects (COPYGRP Statement)”
on page 28 for information about selecting groups on COPYGRP.
//CPYGRP JOB ...
//STEP1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//DDIN DD DSNAME=PDSESETA,DISP=SHR
//DDOUT DD DSNAME=PDSESETB,LIKE=PDSESETA,DSNTYPE=LIBRARY,
// DISP=(NEW,CATLG)
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1,1))
//SYSIN DD *
GROUPCPY COPYGRP INDD=DDIN,OUTDD=DDOUT

SELECT MEMBER=(ALIAS001)
/*

IEBCOPY

72 z/OS V2R13.0 DFSMSdfp Utilities

The control statements are discussed below:

v DDIN DD defines the input data set, PDSE, which is a partitioned data set
extended.

DDOUT DD defines the output data set, PDSE, which is a partitioned data set
extended.

All PDSEs must be managed by the Storage Management Subsystem.

The LIKE parameter indicates that the DCB and SPACE attributes for
PDSESETB are to be copied from PDSESETA.

The DSNTYPE parameter defines the new data set as a PDSE.

The Storage Management Subsystem chooses an appropriate volume for the
allocation.

v SYSUT3 DD defines a temporary spill data set.

v SYSIN DD defines the control data set, which follows in the input stream. The
data set contains a COPYGRP statement, an INDD statement, and an OUTDD
statement.

v COPYGRP indicates the start of the copy operation.

The INDD parameter shows PDSESETA as the input data set.

The OUTDD parameter shows PDSESETB as the output data set.

v The SELECT statement indicates that a group that has the alias ALIAS001 is to
be selected from the input data set (PDSESETA) and copied to the output data
set (PDSESETB).

IEBCOPY

Chapter 3. IEBCOPY (Library Copy) Program 73

IEBCOPY

74 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 4. IEBDG (Test Data Generator) Program

IEBDG is a data set utility that is used to provide a pattern of test data to be used
as a programming debugging aid. This pattern of data can then be analyzed quickly
for predictable results.

You can create a data set without supplying any input data, or you can specify a
data set from which input data is to be taken. The data set that you create may
have records of any format. Sequential or indexed sequential access method
(ISAM) data sets, or members of partitioned data sets or PDSEs, can be used for
input or output.

IEBDG also gives you the option of specifying your own exit routine for monitoring
each output record before it is written.

When you define the contents of a field, the following must be decided:

v Which pattern is to be placed initially in the defined field. You can use your own
pattern, or a pattern that is supplied by IBM.

v What action, if any, is to be performed to alter the contents of the field after it is
selected for each output record.

If IEBDG is invoked from an application program, you can dynamically allocate the
data sets by issuing SVC 99 before calling IEBDG.

Selecting a Pattern
You can either use one of the IBM-supplied patterns, which are described here, or
you can specify your own pattern.

IBM-Supplied Patterns
IBM supplies seven patterns:
v Alphanumeric
v Alphabetic
v Zoned decimal
v Packed decimal
v Binary number
v Collating sequence
v Random number

You may choose a pattern when defining the contents of a field. All patterns, except
the binary and random number patterns, repeat in a given field, provided that the
defined field length is sufficient to permit repetition. For example, the alphabetic
pattern is:
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFG...

Table 13 shows the IBM-supplied patterns.

Table 13. IBM-Supplied Test Data Patterns

Type
Expressed in
Hexadecimal

Expressed in
Printable Characters

Alphanumeric C1C2...E9, F0...F9 AB...Z, 0...9

Alphabetic C1C2...E9 AB...Z

© Copyright IBM Corp. 1979, 2002 75

Table 13. IBM-Supplied Test Data Patterns (continued)

Type
Expressed in
Hexadecimal

Expressed in
Printable Characters

Zoned Decimal F0F0...F9F9 00...99

Packed Decimal 0000...001C
(Positive pattern)
0000...001D
(Negative pattern)

Not applicable

Binary Number 00000001
(Positive pattern)
FFFFFFFF
(Negative pattern)

Not applicable

Collating
Sequence

40...F9 �¢.<(+|&!$*);¬-/,%_>?:'="
A...Z 0...9

Random Number Random hexadecimal
digits

Not applicable

A 4-byte packed decimal or binary number is right-aligned in the defined field. The
remainder of the field will contain the fill character.

You can specify a starting character when defining an alphanumeric, alphabetic, or
collating-sequence field. For example, a 10-byte alphabetic field for which “H” is
specified as the starting character would appear as:
HIJKLMNOPQ

The same 10-byte alphabetic field with no specified starting character would appear
as:
ABCDEFGHIJ

You can specify a mathematical sign when defining a packed decimal or binary
field. If no sign is specified, the field is assumed to be positive.

User-Specified Patterns
Instead of selecting an IBM-supplied pattern, you may want to specify your own
pattern to be placed in the defined field. You can provide:
v A character string
v A decimal number to be converted to packed decimal by IEBDG
v A decimal number to be converted to binary by IEBDG

When you supply a pattern, a pattern length must be specified that is equal to or
less than the specified field length. A character pattern is left-aligned in a defined
field; a decimal number that is converted to packed decimal or to binary is
right-aligned in a defined field.

You can initially fill a defined field with either a character or a hexadecimal digit. For
example, the 10-byte pattern “BADCFEHGJI” is to be placed in a 15-byte field. The
character “2” is to be used to pad the field. The result is BADCFEHGJI22222. (If no
fill character is provided, the remaining bytes contain binary zeros.) The fill
character, if specified, is written in each byte of the defined field before the inclusion
of any pattern.

IEBDG

76 z/OS V2R13.0 DFSMSdfp Utilities

Modifying Fields in a Record
You can use IEBDG to change the contents of a field in a specified manner. One of
the following actions can be selected to change a field after its inclusion in each
applicable output record:
v Ripple
v Shift left
v Shift right
v Truncate left
v Truncate right
v Fixed
v Roll
v Wave

Figure 9 shows the effects of each of the actions on a 6-byte alphabetic field. Note
that the roll and wave actions are applicable only when you use one of your own
patterns. In addition, the result of a ripple action depends on which type of pattern
(IBM-supplied or user-supplied) is used.

If no action is selected, or if the specified action is not compatible with the format,
the fixed action is assumed by IEBDG.

Figure 9. IEBDG Actions

IEBDG

Chapter 4. IEBDG (Test Data Generator) Program 77

Input and Output
IEBDG uses the following input:

v An input data set that contains records to be used in the construction of an
output data set or member of a partitioned data set or PDSE. The input data sets
are optional; that is, output records can be created entirely from utility control
statements.

v A control data set that contains any number of sets of utility control statements.

IEBDG produces the following output:

v An output data set that is the result of the IEBDG operation. One output data set
is created by each set of utility control statements included in the job step.

v A message data set that contains informational messages, the contents of utility
control statements, and any error messages.

Input and output data sets may be sequential, indexed sequential (ISAM), or
members of a partitioned data set or PDSE. BDAM and VSAM are not supported.

See Appendix A for IEBDG return codes.

Control
IEBDG is controlled by job and utility control statements. The job control statements
process IEBDG and define the data sets used and produced by IEBDG. Utility
control statements are used to control the functions of the program and to define
the contents of the output records.

Job Control Statements
Table 14 shows the job control statements for IEBDG.

Both input and output data sets can contain fixed, variable, or undefined records.

Table 14. Job Control Statements for IEBDG

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEBDG) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential data set for messages. The data set can be written
on a system output device, a tape volume, or a DASD volume.

anyname1 DD Defines an optional input data set or member of a data set. Any number
of these statements (each having a ddname different from all other
ddnames in the job step) can be included in the job step.

anyname2 DD Defines an output data set or member of a data set. Any number of these
DD statements can be included per job step; however, only one
statement is applicable per set of utility control statements.

SYSIN DD Defines the control data set, which contains the utility control statements
and, optionally, input records. The data set normally resides in the input
stream; however, it can be defined as a sequential data set or as a
member of a partitioned data set or PDSE.

IEBDG

78 z/OS V2R13.0 DFSMSdfp Utilities

EXEC Statement
The EXEC statement can include an optional PARM parameter to specify the
number of lines to be printed between headings in the message data set.

Table 15 shows the syntax of the EXEC statement:

Table 15. Syntax of EXEC statement

//[stepname] EXEC PGM=IEBDG[,PARM='LINECT=nnnn']

where:

PGM=IEBDG
specifies that you want to run the IEBDG program.

PARM='LINECT=nnnn'
specifies the number of lines to be printed per page on the output listing. The
number is a 4-digit decimal number from 0000 to 9999.

If PARM is omitted, 58 lines are printed between headings (unless a channel 12
punch is encountered in the carriage control tape, in which case a skip to
channel 1 is performed and a heading is printed).

SYSPRINT DD Statement
If the SYSPRINT DD statement is omitted, no messages are written. The block size
for the SYSPRINT data set must be a multiple of 121. Any blocking factor can be
specified.

anyname1 DD Statement
You can use any number of data sets or members as input for IEBDG. You must
code a separate DD statement for each data set or member.

You cannot, for instance, use two members of a partitioned data set by only coding
one DD statement for the data set. If the input data set is a member of a partitioned
data set or PDSE, you must code the DD statement so that it refers to that
member. Do this by coding the data set name parameter as
DSNAME=datasetname(membername).

You can also specify a sequential or ISAM data set as an input data set. If you are
using an ISAM data set, specify the key length and DSORG=IS in the DCB
parameter. The data set maximum block size cannot exceed 32760 bytes.

anyname2 DD Statement
You can create any number of data sets in one use of IEBDG. You must code a
separate DD statement for each data set or member you are creating. The data
sets or members must be new.

If you are creating a new member of a partitioned data set or PDSE, the DD
statement must refer to that specific member. Do this by coding the data set name
parameter as DSNAME=datasetname(membername).

You can also create sequential or ISAM data sets. If you identify the same
sequential data set for input and output in one operation, the utility might destroy
some input data before it is read. This might cause I/O errors. They can be the
same member of a partitioned data set because the utility writes the member in a
different area of the data set. The data set maximum block size cannot exceed
32760 bytes.

IEBDG

Chapter 4. IEBDG (Test Data Generator) Program 79

Refer to z/OS DFSMS: Using Data Sets for information on estimating space
allocations.

SYSIN DD Statement
The block size for the SYSIN data set must be a multiple of 80. Any blocking factor
can be specified, but the block size cannot exceed 32760 bytes.

Utility Control Statements
IEBDG is controlled by the utility control statements that are shown in Table 16.

Table 16. IEBDG Utility Control Statements

Statement Use

DSD Specifies the ddnames of the input and output data sets. One DSD
statement must be included for each set of utility control statements.

FD Defines the contents and lengths of fields to be used in creating output
records.

REPEAT Specifies the number of times a CREATE statement or a group of
CREATE statements are to be used in generating output records.

CREATE Defines the contents of output records.

END Marks the end of a set of IEBDG utility control statements.

Any number of sets of control statements can appear in a single job step. Each set
defines one data set. A set of control statements contains one DSD statement, any
number of FD, CREATE and REPEAT statements, and one END statement when
INPUT is omitted from the FD statements.

General continuation requirements for utility control statements are described in
“Continuing Utility Control Statements” on page 8.

DSD Statement
The DSD statement marks the beginning of a set of utility control statements and
specifies the data sets that IEBDG is to use as input. The DSD statement can be
used to specify one output data set and any number of input data sets for each
application of IEBDG.

The syntax of the DSD statement is:

[label]] DSD OUTPUT=(ddname)

[,INPUT=(ddname1[,ddname2][,....])]

where:

OUTPUT=(ddname)
specifies the ddname of the DD statement defining the output data set.

INPUT=(ddname1[,ddname2] [,...])
specifies the ddnames of a DD statements defining data sets used as input to
the program. Any number of data sets can be included as input—that is, any
number of ddnames referring to corresponding DD statements can be coded.
Whenever ddnames are included on a continuation record, they must begin in
column 4.

IEBDG

80 z/OS V2R13.0 DFSMSdfp Utilities

The ddname SYSIN must not be coded in the INPUT parameter on the DSD
control statement. Each ddname should not appear more than once on any
control statement.

Each parameter should appear no more than once on any DSD statement.

FD Statement
The FD statement defines the contents and length of a field that will be used
subsequently by a CREATE statement (or statements) to form output records. A
defined field within the input logical record may be selected for use in the output
records if it is referred to, by name, by a subsequent CREATE statement.

Figure 10 shows how the FD statement is used to specify a field in an input record
to be used in output records. The left-hand side of the figure shows that a field in
the input record beginning at byte 50 is selected for use in the output record. The
right-hand side of the figure shows that the field is to be placed at byte 20 in the
output record.

When selecting fields from an input record (FD INPUT=ddname), the field must be
defined by an FD statement within each set of utility control statements. In that
case, defined fields for field selection are not usable across sets of utility control
statements; such an FD record may be duplicated and used in more than one set of
utility control statements within the job step.

You can also indicate that a numeric field is to be modified after it has been referred
to n times by a CREATE statement or statements, that is, after n cycles, a
modification is to be made. A modification will add a number you supply to a field.

The syntax of the FD statement is:

[label] FD NAME=name
,LENGTH=length
[,STARTLOC=starting-location]
[,FILL={'character|X'nn'}]
[,{FORMAT=pattern[,CHARACTER=character]|

PICTURE=length,{'character-string'|P'n'|B}}]
[,SIGN=sign]
[,ACTION={FX|RO|RP|SL|SR|TL|TR|WV}
[,INDEX=n[,CYCLEn][,RANGE=n]]
[,INPUT=ddname]
[,FROMLOC=number]

where:

LENGTH
Same as input field

Output recordInput record

1 50 70 80 1 20 40 80

FD NAME=FIELD1,LENGTH=20,STARTLOC=20,FROMLOC=50,INPUT=INSET

Figure 10. Field Selected from the Input Record for Use in the Output Record

IEBDG

Chapter 4. IEBDG (Test Data Generator) Program 81

NAME=name
specifies the name of the field defined by this FD statement.

LENGTH=length
specifies the length, in bytes, of the defined field. For variable records, the sum
of the field must be four less than the maximum record length. This is to
account for the four-byte record descriptor word.

If the INPUT parameter is specified, the LENGTH parameter overrides the
length of each input logical record. If the combination of FROMLOC and
LENGTH values is longer than the input record, the result is unpredictable.

For ACTION=RP or WV, the length is limited to 16383 bytes. For ACTION=RO,
the length is limited to 10922 bytes.

STARTLOC=starting-location
specifies a starting location (within all output records using this field) in which a
field is to begin. For example, if the first byte of an output record is chosen as
the starting location, the keyword is coded STARTLOC=1; if the tenth byte is
chosen, STARTLOC=10 is coded.

Default: The field will begin in the first available byte of the output record
(determined by the order of specified field names in the applicable CREATE
statement). For variable records, the starting location is the first byte after the
length descriptor.

FILL={'character'|X 'nn'}
specifies a value that is to be placed in each byte of the output record before
any other operation in the construction of the record. If the FILL keyword is also
specified on the CREATE statement, the FILL value on the CREATE statement
takes precedence. These values can be coded:

'character'
specifies a character that is to be converted to EBCDIC and placed in each
byte of the output record.

X'nn'
specifies 2 hexadecimal digits (for example, FILL=X'40', or FILL=X'FF') to
be placed in each byte of the output record.

Default: Binary zeros are placed in the output record.

FORMAT=pattern[,CHARACTER=character]
specifies an IBM-supplied pattern that is to be placed in the defined field.
FORMAT must not be used when PICTURE is used. The values that can be
coded are:

pattern
specifies the IBM-supplied patterns, as follows:
AL

specifies an alphabetic pattern.
AN

specifies an alphanumeric pattern.
BI specifies a binary pattern.
CO

specifies a collating sequence pattern.
PD

specifies a packed decimal pattern.
RA

specifies a random binary pattern.

IEBDG

82 z/OS V2R13.0 DFSMSdfp Utilities

ZD
specifies a zoned decimal pattern.

CHARACTER=character
specifies the starting character of a field. See “IBM-Supplied Patterns” on
page 75 for details on starting characters.

PICTURE=length,{ 'character-string'|P'n'|B'n'}
specifies the length and the contents of a user-supplied pattern. PICTURE must
not be used when FORMAT is used. If both PICTURE and NAME are omitted,
the fill character specified in the CREATE statement appears in each byte of
applicable output records. These values can be coded:

length
specifies the number of bytes that the pattern will occupy. Length must be
equal to or less than the LENGTH parameter value in the FD statement.

'character-string'
specifies a character string that is to be converted to EBCDIC and placed in
the applicable records. The character string is left-aligned at the defined
starting position. A character string may be broken in column 71, if you
place a nonblank character in column 72 and continue the string in column
4 of the next statement. The number of characters within the quotation
marks must equal the number specified in the length subparameter.

P'n'
specifies a decimal number that is to be converted to packed decimal and
right-aligned (within the boundaries of the defined length and starting byte)
in the output records or defined field. The number of characters within the
quotation marks must equal the number specified in the length
subparameter.

B'n'
specifies a decimal number that is to be converted to binary and
right-aligned (within the boundaries of the defined length and starting byte)
in the output records or defined field. The number of characters within the
quotation marks must equal the number specified in the length
subparameter.

SIGN=sign
specifies a mathematical sign (+ or −), to be used when defining a packed
decimal or binary field.

Default: Positive (+).

ACTION={FX|RO|RP|SL|SR|TL|TR|WV}
specifies how the contents of a defined field are to be altered (if at all) after the
field’s inclusion in an output record.

See Table 17 on page 85 for system actions compatible with FORMAT and
PICTURE values. See Figure 9 on page 77 for examples of IEBDG ACTION
patterns. These values can be coded:

FX
specifies that the contents of a defined field are to remain fixed after the
field’s inclusion in an output record.

FX is the default.

RO
specifies that the contents of a defined field are to be rolled after the field’s
inclusion in an output record. The pattern (“picture”) is moved to the left by

IEBDG

Chapter 4. IEBDG (Test Data Generator) Program 83

one byte for each output record, until the first nonblank character of the
picture is in the first byte of the field. Then, the picture is moved to the right
one byte for each output record, until it returns to its original position in the
field.

RO can be used only for a user-defined pattern. For RO to be effective, the
picture length must be less than the field length.

RP
specifies that the contents of a defined field are to be rippled after the
field’s inclusion in an output record.

SL
specifies that the contents of a defined field are to be shifted left after the
field’s inclusion in an output record.

SR
specifies that the contents of a defined field are to be shifted right after the
field’s inclusion in an output record.

TL specifies that the contents of a defined field are to be truncated left after the
field’s inclusion in an output record.

TR
specifies that the contents of a defined field are to be truncated right after
the field’s inclusion in an output record.

WV
specifies that the contents of a defined field are to be waved after the field’s
inclusion in an output record. The pattern (“picture”) is moved to the left by
one byte for each output record, until the first nonblank character of the
picture is in the first byte of the field. Then the character string is reset to its
original position.

WV can be used only for a user-defined pattern. For WV to be effective, the
picture length must be less than the field length.

INDEX=n[,CYCLE=n] [,RANGE=n]
specifies a decimal number to be added to this field whenever a specified
number of records have been written. INDEX is valid only with FORMAT
patterns ZD, PD and BI, or PICTURE patterns P'n' and n . Additional values can
be coded:

CYCLE=n
specifies a number of output records (to be written as output or made
available to an exit routine) that are treated as a group by the INDEX
keyword. Whenever this field has been used in the construction of the
specified number of records, it is modified as specified in the INDEX
parameter. For example, if CYCLE=3 is coded, output records may appear
as 111 222 333 444, and so forth. This parameter can be coded only when
INDEX is coded.

RANGE=n
specifies an absolute value which the contents of this field can never
exceed. If an index operation tries to exceed the specified absolute value,
the contents of the field as of the previous index operation are used.

Default: No indexing is performed. If CYCLE is omitted and INDEX is coded, a
CYCLE value of 1 is assumed; that is, the field is indexed after each inclusion
in a potential output record.

IEBDG

84 z/OS V2R13.0 DFSMSdfp Utilities

INPUT=ddname
specifies the ddname of a DD statement defining a data set used as input for
field selection. Only a portion of the record described by the FD statement will
be placed in the output record. If the record format of the output data set
indicates variable-length records, the position within the output record will
depend upon where the last insertion into the output record was made unless
STARTLOC is specified.

The ddname SYSIN must not be coded in the INPUT parameter on the FD
control statement. Each ddname should not appear more than once on any
control statement.

A corresponding ddname must also be specified in the associated CREATE
statement in order to have the input records read.

FROMLOC=number
specifies the location of the selected field within the input logical record. The
number represents the position in the input record. If, for example,
FROMLOC=10 is coded, the specified field begins at the tenth byte; if
FROMLOC=1 is coded, the specified field begins at the first byte. (For
variable-length records, significant data begins in the first byte after the 4-byte
length descriptor.)

When retrieving data sets with fixed or fixed-blocked record formats and
RKP>0, the record consists of the key plus the data with embedded key. To
copy the entire record, the output logical record length has to be the input
logical record length plus the key length. If only the data (which includes the
embedded key) is to be copied, set FROMLOC equal to the keylength.

Default: The start of the input record.

Usage notes for FD: Some of the FD keywords do not apply when you select
certain patterns or pictures; for example, the INDEX, CYCLE, RANGE, and SIGN
parameters are used only with numeric fields. Table 17 shows which IEBDG
keywords can be used with which patterns. Each keyword should appear no more
than once on any FD statement.

Table 17. Compatible IEBDG Operations

FORMAT/PICTURE Value Compatible Parameters

FORMAT=AL (alphabetic)
FORMAT=AN (alphanumeric)
FORMAT=CO (collating sequence)

ACTION=SL (shift left)
ACTION=SR (shift right)
ACTION=TL (truncate left)
ACTION=TR (truncate right)
ACTION=FX (fixed)
ACTION=RP (ripple)

FORMAT=ZD (zoned decimal)
FORMAT=PD (packed decimal)
FORMAT=BI (binary)

INDEX=n
CYCLE=n
RANGE=n
SIGN=n¹
SIGN=n(1)

PICTURE=P'n' (packed decimal)
PICTURE=
n
(binary)

INDEX=n
CYCLE=n
RANGE=n
SIGN=n

IEBDG

Chapter 4. IEBDG (Test Data Generator) Program 85

Table 17. Compatible IEBDG Operations (continued)

FORMAT/PICTURE Value Compatible Parameters

PICTURE='string' (EBCDIC) ACTION=SL (shift left)
ACTION=SR (shift right)
ACTION=TL (truncate left)
ACTION=TR (truncate right)
ACTION=FX (fixed)
ACTION=RP (ripple)
ACTION=WV (wave)
ACTION=RO (roll)

Note: ¹ Zoned decimal numbers (ZD) do not include a sign. (1) Zoned decimal numbers
(ZD) do not include a sign.

REPEAT Statement
The REPEAT statement specifies the number of times a CREATE statement or
group of CREATE statements is to be used repetitively in the generation of output
records. The REPEAT statement precedes the CREATE statements to which it
applies. The syntax of the REPEAT statement is:

[label] REPEAT QUANTITY=number[,CREATE=number]

where:

QUANTITY=number
specifies the number of times the defined group of CREATE statements is to be
used repetitively. This number cannot exceed 65,535.

CREATE=number
specifies the number of following CREATE statements to be included in the
group.

Default: Only the first CREATE statement is repeated.

CREATE Statement
The CREATE statement defines the contents of a record to be written directly as an
output record or to be made available to an exit routine you supply. An output
record is constructed by referring to previously defined fields by name or by
providing a pattern (“picture”) to be placed in the record. You can generate multiple
records with a single CREATE statement.

An output record is constructed in the following order:

1. A fill character, specified or default (binary zero), is initially loaded into each byte
of the output record.

2. If the INPUT operand is specified on the CREATE statement, and not on an FD
statement, the input records are left-aligned in the corresponding output record.

3. If the INPUT operand specifies a ddname in any FD statement, only the fields
described by the FD statement(s) are placed in the output record.

4. FD fields, if any, are placed in the output record in the order of the appearance
of their names in the CREATE statement. The location of the fields in the output
record depends upon whether the field has a specified starting location
(STARTLOC).

For instance, if you do not specify a starting location for any field, the fields will
be placed in order in the output record, starting at the first position of the output
record. Figure 11 on page 87 shows the addition of field X to two different
records. In record 1, field X is the first field referred to by the CREATE

IEBDG

86 z/OS V2R13.0 DFSMSdfp Utilities

statement; therefore, field X begins in the first byte of the output record. In
record 2, two fields, field A and field B, have already been referred to by a
CREATE statement; field X, the next field referred to, begins immediately after
field B. Field X does not have a special starting location in this example.

If FD fields have starting locations specified explicitly, each field will be placed in
the output record beginning at the location specified. These fields will be written
to the output record in the order they appear on the CREATE statement. Thus, if
a field has the same starting location as another field, or has a starting location
that overlaps another field, the field that appears later on the CREATE
statement will be the field whose contents will occupy those positions. Figure 12
shows an example of two fields with specified starting locations that result in an
overlap of the fields.

If some fields specify a starting location and others do not, the location of the
fields will depend on the order in which you specify them in the CREATE
statement. A field with an unspecified starting location will begin immediately
following the last record written.

For instance, Figure 13 on page 88 shows how two fields, one with a starting
location specified and one without, are written to an output record. Record 1
shows FIELD1, with a specified starting location, written first. FIELD1 starts at
location 20, and occupies 20 bytes. FIELD2 is then written next, and so begins
at position 40. Record 2 shows FIELD2, with an unspecified starting location,
written first. FIELD2 is placed starting at the first position of the output record.
FIELD1 is then placed at position 20, even though it overlaps FIELD2, which
has a length of 30.

Field X

Field A Field B Field X

1

1

80

80

21

21 41 61

Record 2:

Record 1:

CREATE NAME=(A,B,X)

CREATE NAME=X

Figure 11. Default Placement of Fields within an Output Record Using IEBDG

FIELD1

1 8020 40 50

FD NAME=FIELD1,LENGTH=30,STARTLOC=20,...
FD NAME=FIELD2,LENGTH=40,STARTLOC=40,...
CREATE NAME=(FIELD1,FIELD2)

FIELD2

Figure 12. Placement of Fields with Specified Output Locations

IEBDG

Chapter 4. IEBDG (Test Data Generator) Program 87

5. A CREATE statement picture, if any, is placed in the output record.

Figure 14 shows three ways in which output records can be created from utility
control statements.

When defining a picture in a CREATE statement, you must specify its length and
starting location in the output record. The specified length must be equal to the
number of specified alphabetic or numeric characters. (When a specified decimal
number is converted to packed decimal or binary, it is automatically right-aligned.)

You can use another data set as a source for input records for creating output
records, or you can include input records in the input stream or SYSIN data set.
Only one input data set can used for an individual CREATE statement.

FIELD1 FIELD2

FIELD2

1

1

80

80

20 40 70

20 4030 70

Record 2:

Record 1:

CREATE NAME=(FIELD2,FIELD1)

CREATE NAME=(FIELD1,FIELD2)

FD NAME=FIELD1,LENGTH=20,STARTLOC=20,...
FD NAME=FIELD2,LENGTH=30,...

FIELD1

Figure 13. Placement of Fields with Only Some Output Locations Specified

CREATE

CREATE

CREATE

1

2

1

3

3

2

5

Picture

Picture

3 4 5

1. Fields only

2. Fields and
picture

3. Picture
only

Output record

Output record

Previously
defined fields

Figure 14. Creating Output Records with Utility Control Statements

IEBDG

88 z/OS V2R13.0 DFSMSdfp Utilities

The syntax of the CREATE statement is:

[label] CREATE [QUANTITY=n]
[,FILL={'character'|X'nn'}]
[,INPUT={ddname|SYSIN[({cccc|$$$E})]}]
[,PICTURE=length,startloc,

{'character-string'| P'n'|B'n'}]
[,NAME={(namelist)|

(namelist-or-(copygroup))}
[,EXIT=routinename]

where:

Note: Each keyword should appear no more than once on any CREATE statement.

QUANTITY=n
specifies the number of records that this CREATE statement is to generate; the
contents of each record are specified by the other parameters. If both
QUANTITY and INPUT are coded, and the quantity specified is greater than the
number of records in the input data set, the number of records created is equal
to the number of input records to be processed plus the generated data up to
the specified number.

Default: If QUANTITY is omitted and INPUT is not specified, only one output
record is created. If QUANTITY is omitted and INPUT is specified, the number
of records created is equal to the number of records in the input data set.

If both QUANTITY and INPUT are coded, but the QUANTITY is less than the
number of records in the input data set, then only the number of records
specified by QUANTITY are written to the output data set.

FILL={'character'|X'nn'}
specifies a value that is to be placed in each byte of the output record before
any other operation in the construction of a record. This value overrides the
FILL keyword specified in an FD statement. These values can be coded:

'character'
specifies a character that is to be translated to EBCDIC and placed in each
byte of the output record.

X'nn'
specifies 2 hexadecimal digits (for example, FILL=X'40', or FILL=X'FF') to
be placed in each byte of the output record.

Default: Binary zeros (X'00') are placed in the output record.

INPUT={ddname|SYSIN [({cccc|$$$E})]}
defines an input data set whose records are to be used in the construction of
output records. If INPUT is coded, QUANTITY should also be coded, unless the
remainder of the input records are all to be processed by this CREATE
statement. If INPUT is specified in an FD statement referenced by this CREATE
statement, there must be a corresponding ddname specified in the CREATE
statement in order to get the input records read. These values can be coded:

ddname
specifies the ddname of a DD statement defining an input data set.

SYSIN[({cccc|$$$E})]
specifies that the SYSIN data set contains records (other than utility control
statements) to be used in the construction of output records. If SYSIN is

IEBDG

Chapter 4. IEBDG (Test Data Generator) Program 89

coded, the input records follow this CREATE statement (unless the
CREATE statement is in a REPEAT group, in which case the input records
follow the last CREATE statement of the group). The “cccc” value can be
any combination of from 1 to 4 characters. If cccc is coded, the end of the
input records is indicated by a record containing those characters beginning
in column 1.

The default value for cccc is $$$E. If you do not code a value for cccc
when you use INPUT=SYSIN, you must use $$$E to mark the end of the
input records in SYSIN. The first three characters are dollar signs, which
are X'5B'.

PICTURE=length,startloc, {'character-string'| P'n'|B'n'}
specifies the length, starting position and the contents of a user-supplied
pattern. If both PICTURE and NAME are omitted, the fill character specified in
the CREATE statement appears in each byte of applicable output records.
These values can be coded:

length
specifies the number of bytes that the pattern (“picture”) will occupy. Length
must be equal to or less than the LENGTH parameter value in the FD
statement.

startloc
specifies a starting position (within any applicable output record) in which
the picture is to begin.

'character-string'
specifies a character string that is to be placed in the applicable records.
The character string is left-aligned at the defined starting position. A
character string may be broken in column 71, if you place a nonblank
character in column 72 and continue the string in column 4 of the next
statement.

P'n'
specifies a decimal number that is to be converted to packed decimal and
right-aligned (within the boundaries of the defined length and starting
position) in the output records or defined field.

B'n'
specifies a decimal number that is to be converted to binary and
right-aligned (within the boundaries of the defined length and starting
position) in the output records or defined field.

NAME={(namelist)| (namelist-or-(copygroup))}
specifies the name or names of previously defined fields to be included in the
applicable output records. If both NAME and PICTURE are omitted, the fill
character specified in the CREATE statement appears in each byte of the
applicable output record. These values can be coded:

(namelist)
specifies the name or names of a field or fields to be included in the
applicable output records. Multiple field names must be separated with
commas. Each field (previously defined in the named FD statement) is
included in an output record in the order in which its name is encountered
in the CREATE statement. If only one name is coded, the parentheses are
optional.

IEBDG

90 z/OS V2R13.0 DFSMSdfp Utilities

(namelist-or-(copygroup))
specifies that some or all fields are to be copied in the output records; that
is, selected fields are to appear in an output record more than once. The
copied fields are specified as:

(COPY=n,name1[,name2] [,...])
where n specifies that the fields indicated are to be treated as a group
and copied n number of times in each output record produced by this
CREATE statement. Any number of copygroups can be included with
NAME. A maximum of 20 field names can be included in a copygroup.

The names of fields that are not to be copied can be specified with
copygroups in the NAME parameter, either before, after, or between
copygroups.

For example:

NAME=(NAME1,(COPY=2,NAME2),NAME3,(COPY=4,NAME4)).

EXIT=routinename
specifies the name of your routine that is to receive control from IEBDG before
writing each output record. For information about specifying an exit routine with
IEBDG, see Appendix C, “Specifying User Exits with Utility Programs” on
page 341.

END Statement
The END statement is used to mark the end of a set of utility control statements.
Each set of control statements can pertain to any number of input data sets but
only to a single output data set.

The syntax of the END statement is:

[label] END

IEBDG Examples
The following examples illustrate some of the uses of IEBDG. Table 18 can be used
as a quick-reference guide to IEBDG examples. The numbers in the “Example”
column refer to examples that follow.

Table 18. IEBDG Example Directory

Operation Data Set
Organization

Device Comments Example

Create output
records from
utility control
statements

Sequential Disk Blocked output. 3

Create partitioned
members from
utility control
statements

Partitioned Disk Blocked output. One set of utility
control statements per member.

5

Modify records
from partitioned
members and
input stream

Partitioned, Sequential Disk Reblocking is performed. Each block of
output records contains ten modified
partitioned input records and two input
stream records.

4

IEBDG

Chapter 4. IEBDG (Test Data Generator) Program 91

Table 18. IEBDG Example Directory (continued)

Operation Data Set
Organization

Device Comments Example

Place binary
zeros in selected
fields.

Sequential Tape Blocked input and output. 1

Ripple alphabetic
pattern

Sequential Tape, Disk Blocked input and output. 2

Roll and wave
user-supplied
patterns

Sequential Disk Output records are created from utility
control statements.

6

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

Example 1: Place Binary Zeros in Records Copied from Sequential
Data Set

In this example, binary zeros are placed in two fields of 100 records copied from a
sequential data set. After the operation, each record in the copied data set
(OUTSET) contains binary zeros in locations 20 through 29 and 50 through 59.

//CLEAROUT JOB ...
//STEP1 EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=A
//SEQIN DD DSNAME=INSET,UNIT=tape,DISP=(OLD,KEEP),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// LABEL=(,NL),VOLUME=SER=222222
//SEQOUT DD DSNAME=OUTSET,UNIT=tape,DISP=(,KEEP),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// VOLUME=SER=222333,LABEL=(,NL)
//SYSIN DD *

DSD OUTPUT=(SEQOUT),INPUT=(SEQIN)
FD NAME=FIELD1,LENGTH=10,STARTLOC=20
FD NAME=FIELD2,LENGTH=10,STARTLOC=50
CREATE QUANTITY=100,INPUT=SEQIN,NAME=(FIELD1,FIELD2)
END

/*

The control statements are discussed below:

v SEQIN DD defines a sequential input data set (INSET). The data set was
originally written on a unlabeled tape volume.

v SEQOUT DD defines the test data set (OUTSET). The output records are
identical to the input records, except for locations 20 through 29 and 50 through
59, which contain binary zeros at the completion of the operation.

v SYSIN DD defines the control data set, which follows in the input stream.

v DSD marks the beginning of a set of utility control statements and refers to the
DD statements defining the input and output data sets.

v The first and second FD statements create two 10-byte fields (FIELD1 and
FIELD2). Because no pattern is specified for these fields, each field contains the
default fill of binary zeros. The fields are to begin in the 20th and 50th bytes of
each output record.

IEBDG

92 z/OS V2R13.0 DFSMSdfp Utilities

v CREATE constructs 100 output records in which the contents of previously
defined fields (FIELD1, FIELD2) are placed in their respective starting locations
in each of the output records. Input records from data set INSET are used as the
basis of the output records.

v END signals the end of a set of utility control statements.

Example 2: Ripple 10-byte Alphabetic Pattern
In this example, a 10-byte alphabetic pattern is rippled. At the end of the job step
the first output record contains “ABCDEFGHIJ”, followed by data in location 11
through 80 from the input record; the second record contains “BCDEFGHIJK”
followed by data in locations 11 through 80, and so forth.
//RIPPLE JOB ...
//STEP1 EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=A
//SEQIN DD DSNAME=INSET,UNIT=tape,VOL=SER=222222,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),DISP=(OLD,KEEP)
//SEQOUT DD DSNAME=OUTSET,UNIT=disk,VOLUME=SER=111111,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// DISP=(,KEEP),SPACE=(TRK,(10,10))
//SYSIN DD *

DSD OUTPUT=(SEQOUT),INPUT=(SEQIN)
FD NAME=FIELD1,LENGTH=10,FORMAT=AL,ACTION=RP,STARTLOC=1
CREATE QUANTITY=100,INPUT=SEQIN,NAME=FIELD1
END

/*

The control statements are discussed below:

v SEQIN DD defines an input sequential data set (INSET). The data set was
originally written on a standard labeled tape volume.

v SEQOUT DD defines the test output data set (OUTSET). Ten tracks of primary
space and ten tracks of secondary space are allocated for the sequential data
set on a disk volume.

v SYSIN DD defines the control data set, which follows in the input stream.

v DSD marks the beginning of a set of utility control statements and refers to the
DD statements defining the input and output data sets.

v The FD statement creates a 10-byte field in which the pattern ABCDEFGHIJ is
initially placed. The data is rippled after each output record is written.

v CREATE constructs 100 output records in which the contents of a previously
defined field (FIELD1) are included. The CREATE statement uses input records
from data set INSET as the basis of the output records.

v END signals the end of a set of utility control statements.

Example 3: Create Output Records from Utility Control Statements
In this example, output records are created entirely from utility control statements.
Three fields are created and used in the construction of the output records. In two
of the fields, alphabetic data is truncated; the other field is a numeric field that is
incremented (indexed) by one after each output record is written. Figure 15 on
page 94 shows the contents of the output records at the end of the job step.

IEBDG

Chapter 4. IEBDG (Test Data Generator) Program 93

72
//UTLYONLY JOB ...
//STEP1 EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=A
//SEQOUT DD DSNAME=OUTSET,UNIT=disk,DISP=(,KEEP),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// SPACE=(TRK,(10,10)),VOLUME=SER=111111
//SYSIN DD DATA

DSD OUTPUT=(SEQOUT)
FD NAME=FIELD1,LENGTH=30,STARTLOC=1,FORMAT=AL,ACTION=TL
FD NAME=FIELD2,LENGTH=30,STARTLOC=31,FORMAT=AL,ACTION=TR
FD NAME=FIELD3,LENGTH=10,STARTLOC=71,PICTURE=10, X

P'1234567890',INDEX=1
CREATE QUANTITY=100,NAME=(FIELD1,FIELD2,FIELD3),FILL=X’FF’
END

/*

The control statements are discussed below:

v SEQOUT DD defines the test output data set. Ten tracks of primary space and
ten tracks of secondary space are allocated for the sequential data set on a disk
volume.

v SYSIN DD defines the control data set, which follows in the input stream.

v DSD marks the beginning of a set of utility control statements and refers to the
DD statement defining the output data set.

v FD defines the contents of three fields to be used in the construction of output
records. The first field contains 30 bytes of alphabetic data to be truncated left
after each output record is written. The second field contains 30 bytes of
alphabetic data to be truncated right after each output record is written. The third
field is a 10-byte field containing a packed decimal number (1234567890) to be
increased by one after each record is written.

v CREATE constructs 100 output records in which the contents of previously
defined fields (FIELD1, FIELD2, and FIELD3) are included. Note that after each
record is written, FIELD1 and FIELD2 are restored to full width.

v END signals the end of a set of utility control statements.

Example 4: Use Members and Input Records as Basis of Output
Member

In this example, two partitioned members and input records from the input stream
are used as the basis of a partitioned output member. Each block of 12 output
records contains 10 modified records from an input partitioned member and two
records from the input stream. Figure 16 on page 95 shows the contents of the
output partitioned member at the end of the job step.

ABCDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZABCD
BCDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZABC

CDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZA

EFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZ

FF . . . FF 00 . . . 00 0123456789

0123456789
0123456789
0123456789
0123456789

FF . . . FF 00 . . . 00
FF . . . FF 00 . . . 00
FF . . . FF 00 . . . 00
FF . . . FF 00 . . . 00

0C

1C
2C
3C
4C

1 31 61 71 75 80

Field 1 Field 2 Fill Field 3 (packed decimal)

Figure 15. Output Records at Job Step Completion

IEBDG

94 z/OS V2R13.0 DFSMSdfp Utilities

//MIX JOB ...
//STEP1 EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=A
//PARIN1 DD DSNAME=INSET1(MEMBA),UNIT=disk,DISP=OLD,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PS),
// VOLUME=SER=111111
//PARIN2 DD DSNAME=INSET2(MEMBA),UNIT=disk,DISP=OLD,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=960,DSORG=PS),
// VOLUME=SER=222222
//PAROUT DD DSNAME=PARSET(MEMBA),UNIT=disk,DISP=(,KEEP),
// VOLUME=SER=333333,SPACE=(TRK,(10,10,5)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=960,DSORG=PO)
//SYSIN DD DATA

DSD OUTPUT=(PAROUT),INPUT=(PARIN1,PARIN2)
FD NAME=FIELD1,LENGTH=13,PICTURE=13,’DEPARTMENT 21’
REPEAT QUANTITY=10,CREATE=2
CREATE QUANTITY=10,INPUT=PARIN1,NAME=FIELD1

Figure 16. Output Partitioned Member at Job Step Completion

IEBDG

Chapter 4. IEBDG (Test Data Generator) Program 95

CREATE QUANTITY=2,INPUT=SYSIN

(input records 1 through 20)

$$$E
REPEAT QUANTITY=10,CREATE=2
CREATE QUANTITY=10,INPUT=PARIN2,NAME=FIELD1
CREATE QUANTITY=2,INPUT=SYSIN

(input records 21 through 40)

$$$E
END

/*

The control statements are discussed below:

v PARIN1 DD defines one of the input partitioned members.

v PARIN 2 DD defines the second of the input partitioned members. (Note that the
members are from different partitioned data sets.)

v PAROUT DD defines the output partitioned member. This example assumes that
the partitioned data set does not exist before the job step; that is, this DD
statement allocates space for the partitioned data set.

v SYSIN DD defines the control data set, which follows in the input stream.

v DSD marks the beginning of a set of utility control statements and refers to the
DD statements defining the input and output data sets.

v FD creates a 13-byte field in which the picture “DEPARTMENT 21” is placed.

v The first REPEAT statement indicates that the following group of two CREATE
statements is to be repeated 10 times.

v The first CREATE statement creates 10 output records. Each output record is
constructed from an input record (from partitioned data set INSET1) and from
previously defined FIELD1.

v The second CREATE statement indicates that two records are to be constructed
from input records included next in the input stream.

v The $$$E record separates the input records from the REPEAT statement. The
next REPEAT statement group is identical to the preceding group, except that
records from a different partitioned member are used as input.

v END signals the end of a set of utility control statements.

Example 5: Create Records in Three Output Data Sets and Write them
to Three Partitioned Data Set Members

Restriction: This example will not work if the data sets are system-managed or
SMS data sets.

In this example, output records are created from three sets of utility control
statements and written in three members in one partitioned data set. Four fields are
created and used in the construction of the output records. In two of the fields
(FIELD1 and FIELD3), alphabetic data is shifted. FIELD2 is fixed zoned decimal
and FIELD4 is fixed alphanumeric. Figure 17 on page 97 shows the partitioned data
set members at the end of the job step.

IEBDG

96 z/OS V2R13.0 DFSMSdfp Utilities

//UTSTS JOB ...
//STEP1 EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=A
//PAROUT1 DD DSNAME=PARSET(MEMBA),UNIT=disk,DISP=(,KEEP),
// VOLUME=SER=111111,SPACE=(TRK,(10,10,5)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//PAROUT2 DD DSNAME=PARSET(MEMBB),UNIT=AFF=PAROUT1,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
// DISP=OLD,VOLUME=SER=111111
//PAROUT3 DD DSNAME=PARSET(MEMBC),UNIT=AFF=PAROUT1,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
// DISP=OLD,VOLUME=SER=111111
//SYSIN DD DATA

DSD OUTPUT=(PAROUT1)
FD NAME=FIELD1,LENGTH=30,FORMAT=AL,ACTION=SL
FD NAME=FIELD2,LENGTH=20,FORMAT=ZD
FD NAME=FIELD3,LENGTH=20,FORMAT=AL,ACTION=SR
FD NAME=FIELD4,LENGTH=30,FORMAT=AN
CREATE QUANTITY=4,NAME=(FIELD1,FIELD3,FIELD2)
END
DSD OUTPUT=(PAROUT2)
CREATE QUANTITY=4,NAME=(FIELD2,(COPY=3,FIELD3))
END
DSD OUTPUT=(PAROUT3)
CREATE QUANTITY=4,NAME=(FIELD4,FIELD1)
END

/*

The control statements are discussed below:

v PAROUT1 DD defines the first member (MEMBA) of the partitioned output data
set. This example assumes that the partitioned data set does not exist before this
job step; that is, this DD statement allocates space for the data set.

ABCDEFGHIJKLMNOPQRSTUVWZYZABCD
BCDEFGHIJKLMNOPQRSTUVWZYZABCD
CDEFGHIJKLMNOPQRSTUVWZYZABCD
DEFGHIJKLMNOPQRSTUVWZYZABCD

ABCDEFGHIJKLMNOPQRST
ABCDEFGHIJKLMNOPQRS

ABCDEFGHIJKLMNOPQR
ABCDEFGHIJKLMNOPQ

00000000000000000001
00000000000000000001
00000000000000000001
00000000000000000001

f i l l
f i l l
f i l l
f i l l

MEMBB

Field 3

21

ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNO

ABCDEFGHIJKLMN
ABCDEFGHIJKLM

Field 3

41

Field 3

61

00000000000000000001
00000000000000000001
00000000000000000001
00000000000000000001

Field 2

1 80

MEMBA

Field 1

1 80

Field 3

31

Field 2

51

Binary Zeros

71

EFGHIJKLMNOPQRSTUVWZYZABCD
FGHIJKLMNOPQRSTUVWZYZABCD
GHIJKLMNOPQRSTUVWZYZABCD
HIJKLMNOPQRSTUVWZYZABCD

f i l l
f i l l
f i l l
f i l l

80

Binary Zeros

61

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123

Field 4

1

Field 1

31

MEMBC

ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNO

ABCDEFGHIJKLMN
ABCDEFGHIJKLM

ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNO

ABCDEFGHIJKLMN
ABCDEFGHIJKLM

Figure 17. Partitioned Data Set Members at Job Step Completion

IEBDG

Chapter 4. IEBDG (Test Data Generator) Program 97

v PAROUT2 and PAROUT3 DD define the second and third members, respectively,
of the output partitioned data set. Note that each DD statement specifies
DISP=OLD and UNIT=AFF=PAROUT1.

v SYSIN DD defines the control data set that follows in the input stream.

v DSD marks the beginning of a set of utility control statements and refers to the
DD statement defining the member applicable to that set of utility control
statements.

v FD defines the contents of a field that is used in the subsequent construction of
output records.

v CREATE constructs four records from combinations of previously defined fields.

v END signals the end of a set of utility control statements.

Example 6: Construct Records with Your Own Patterns
In this example, 10 fields containing user-supplied character patterns are used in
the construction of output records. After a record is written, each field is rolled or
waved, as specified in the applicable FD statement. Figure 18 shows the contents
of the output records at the end of the job step.

72
//ROLLWAVE JOB ...
//STEP1 EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=A
//OUTSET DD DSNAME=SEQSET,UNIT=disk,DISP=(,KEEP),
// VOLUME=SER=SAMP,SPACE=(TRK,(10,10)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//SYSIN DD *
DSD OUTPUT=(OUTSET)
FD NAME=FIELD1,LENGTH=8,PICTURE=8,’ AAAAA’,ACTION=RO
FD NAME=FIELD2,LENGTH=8,PICTURE=8,’BBBBB ’,ACTION=RO
FD NAME=FIELD3,LENGTH=8,PICTURE=8,’A AA ’,ACTION=RO
FD NAME=FIELD4,LENGTH=8,PICTURE=8,’ BB B’,ACTION=RO
FD NAME=FIELD5,LENGTH=8,PICTURE=8,’ AAA ’,ACTION=RO
FD NAME=FIELD6,LENGTH=8,PICTURE=8,’ CCCCC’,ACTION=WV
FD NAME=FIELD7,LENGTH=8,PICTURE=8,’ DDDD ’,ACTION=WV
FD NAME=FIELD8,LENGTH=8,PICTURE=8,’ C CC ’,ACTION=WV
FD NAME=FIELD9,LENGTH=8,PICTURE=8,’ DD D’,ACTION=WV
FD NAME=FIELD10,LENGTH=8,PICTURE=8,’ CCC ’,ACTION=WV

Figure 18. Contents of Output Records at Job Step Completion

IEBDG

98 z/OS V2R13.0 DFSMSdfp Utilities

CREATE QUANTITY=300,NAME=(FIELD1,FIELD2,FIELD3, X
FIELD4,FIELD5,FIELD6,FIELD7,FIELD8,FIELD9,FIELD10)

END
/*

The control statements are discussed below:

v OUTSET DD defines the output sequential data set on a disk volume. Ten tracks
of primary space and 10 tracks of secondary space are allocated to the data set.

v SYSIN DD defines the control data set that follows in the input stream.

v DSD marks the beginning of a set of utility control statements and refers to the
DD statement defining the output data set.

v FD defines a field to be used in the subsequent construction of output records.
The direction and frequency of the initial roll or wave depend on the location of
data in the field.

v CREATE constructs 300 records from the contents of the previously defined
fields.

v END signals the end of a set of utility control statements.

IEBDG

Chapter 4. IEBDG (Test Data Generator) Program 99

IEBDG

100 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 5. IEBEDIT (Edit Job Stream) Program

You can use IEBEDIT to create a data set containing a selection of jobs or job
steps. These jobs or job steps can be entered into the job stream at a later time for
processing.

You can edit and selectively copy an input job stream to an output data set by using
IEBEDIT. The program can copy:

v An entire job or jobs, including JOB statements and any associated JOBLIB or
JOBCAT statements, and JES2 or JES3 control statements.

v Selected job steps, including the JOB statement, JES2 or JES3 control
statements following the JOB statement, and any associated JOBLIB or JOBCAT
statements.

All selected JOB statements, JES2 or JES3 control statements, JOBLIB or JOBCAT
statements, jobs, or job steps are placed in the output data set in the same order in
which they appear in the input data set. A JES2 or JES3 control statement or a
JOBLIB or JOBCAT statement will be copied only if it follows a selected JOB
statement.

When IEBEDIT encounters a selected job step containing an input record having
the characters “..*” (period, period, asterisk) in columns 1 through 3, the program
automatically converts that record to a termination statement (/* statement) and
places it in the output data set.

A “/*nonblank” indicates a JES2 or JES3 control statement.

Input and Output
IEBEDIT uses the following input:

v An input data set, which is a sequential data set consisting of a job stream. The
input data set is used as source data in creating an output sequential data set.

v A control data set, which contains utility control statements that are used to
specify the organization of jobs and job steps in the output data set.

IEBEDIT produces the following output:

v An output data set, which is a sequential data set consisting of a resultant job
stream.

v A message data set, which is a sequential data set that contains applicable
control statements, error messages, if applicable, and, optionally, the output data
set.

See Appendix A for IEBEDIT return codes.

Control
IEBEDIT is controlled by job control statements and utility control statements. The
job control statements are required to run or load the program and to define the
data sets used and produced by the program. The utility control statements are
used to control the functions of the program.

© Copyright IBM Corp. 1979, 2002 101

Job Control Statements
Table 19 shows the job control statements for IEBEDIT.

Table 19. Job Control Statements for IEBEDIT

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEBEDIT) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential data set for messages. The data set can be written
to a system output device, a tape volume, or a direct access volume.

SYSUT1 DD Defines a sequential input data set on a card reader, tape volume, or
direct access device.

SYSUT2 DD Defines a sequential output data set on a card punch, printer, tape
volume, or direct access device.

SYSIN DD Defines the control data set. The data set normally is included in the
input stream; however, it can be defined as a member of a procedure
library or as a sequential data set existing somewhere other than in the
input stream.

SYSPRINT DD Statement
The block size for the SYSPRINT data set must be a multiple of 121. If not, the job
step will be ended with a return code of 8.

SYSUT1, SYSUT2, and SYSIN DD Statements
The block size for the SYSIN, SYSUT1, and SYSUT2 data sets must be a multiple
of 80. Any blocking factor can be specified for these record sizes.

Any JES2 or JES3 control statement or JOBLIB DD statement that follows a
selected JOB statement in the SYSUT1 data set will be automatically copied to the
output data set. JES2 or JES3 control statements preceding the JOB statement are
assumed to belong to the previous job. JES2 or JES3 control statements preceding
the first JOB statement are included only if you request a total copy.

However, if the SYSUT1 data set is included in the input stream (SYSUT1 DD
DATA) JES2 or JES3 control statements are included only if a delimiter other than
“/*” is coded in the SYSUT1 DD DATA statement. For a description of coding
another delimiter, see the publication z/OS MVS JCL User’s Guide. If another
delimiter is not coded, the first two characters of the JES2 or JES3 control
statement will act as a delimiter and end the SYSUT1 data set.

Utility Control Statement
IEBEDIT uses only one utility control statement, EDIT. Continuation requirements
for the statement are described in “Continuing Utility Control Statements” on page 8.

You can use the EDIT statement to indicate which step or steps of a specified job in
the input data set you want included in the output data set. Any number of EDIT
statements can be included in an operation. Thus, you can create a data set with
any number of job steps in one operation.

EDIT statements must be included in the same order as the input jobs that they
represent. You can copy the entire input data set by omitting the EDIT statement.

IEBEDIT

102 z/OS V2R13.0 DFSMSdfp Utilities

The syntax of the EDIT statement is:

[label] EDIT [START=jobname]
[,TYPE={POSITION|INCLUDE|EXCLUDE}]
[,STEPNAME=(namelist)]
[,NOPRINT]

where:

START=jobname
specifies the name of the input job to which the EDIT statement applies. (Each
EDIT statement must apply to a separate job.) If START is specified without
TYPE and STEPNAME, the JOB statement and all job steps for the specified
job are included in the output.

Default: If START is omitted and only one EDIT statement is provided, the first
job encountered in the input data set is processed. If START is omitted from an
EDIT statement other than the first statement, processing continues with the
next JOB statement found in the input data set.

TYPE={POSITION|INCLUDE|EXCLUDE}
specifies the contents of the output data set. These values can be coded:

POSITION
specifies that the output is to consist of a JOB statement, the job step
specified in the STEPNAME parameter, and all steps that follow that job
step. All job steps preceding the specified step are omitted from the
operation. POSITION is the default.

INCLUDE
specifies that the output data set is to contain a JOB statement and all job
steps specified in the STEPNAME parameter.

EXCLUDE
specifies that the output data set is to contain a JOB statement and all job
steps belonging to the job except those steps specified in the STEPNAME
parameter.

STEPNAME=(namelist)
specifies the names of the job steps that you want to process.

Namelist can be a single job step name, a list of step names separated by
commas, or a sequential range of steps separated by a hyphen (for example,
STEPA-STEPE). Any combination of these may be used in one namelist. If
more than one step name is specified, the entire namelist must be enclosed in
parentheses.

When coded with TYPE=POSITION, STEPNAME specifies the first job step to
be placed in the output data set. Job steps preceding this step are not copied to
the output data set.

When coded with TYPE=INCLUDE or TYPE=EXCLUDE, STEPNAME specifies
the names of job steps that are to be included in or excluded from the
operation. For example, STEPNAME=(STEPA,STEPF-STEPL,STEPZ) indicates
that job steps STEPA, STEPF through STEPL, and STEPZ are to be included
in or excluded from the operation.

If STEPNAME is omitted, the entire input job whose name is specified on the
EDIT statement is copied. If no job name is specified, the first job encountered
is processed.

IEBEDIT

Chapter 5. IEBEDIT (Edit Job Stream) Program 103

NOPRINT
specifies that the message data set is not to include a listing of the output data
set.

Default: The resultant output is listed in the message data set.

IEBEDIT Examples
The following examples show some of the uses of IEBEDIT. Table 20 can be used
as a quick-reference guide to these examples. The numbers in the “Example”
column refer to the examples that follow.

Table 20. IEBEDIT Example Directory

Operation Devices Comments Example

EDIT Disk Copies JOB statement for JOBA, the job step STEPF, and all
steps that follow.

4

EDIT Disk and
Tape

Includes a job step from one job and excludes a job step from
another job.

3

EDIT Tape Copies one job into output data set. 1

EDIT Tape Selectively copies job steps from each of three jobs. 2

EDIT Tape Copies entire input data set. The “..*” record is converted to a “/*”
statement in the output data set.

5

EDIT Tape Copies entire input data set, including JES2 control statements. 6

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

Example 1: Copy One Job
In this example, one job (JOBA), including all of its job steps, is copied into the
output data set. The input data set contains three jobs: JOBA, JOBB and JOBC.
//EDIT1 JOB ...
//STEP1 EXEC PGM=IEBEDIT
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=INJOBS,UNIT=tape,
// DISP=(OLD,KEEP),VOL=SER=001234
//SYSUT2 DD DSNAME=OUTTAPE,UNIT=tape,DISP=(NEW,KEEP),
// VOL=SER=001235,DCB=(RECFM=FB,LRECL=80,BLKSIZE=80),
//SYSIN DD *

EDIT START=JOBA
/*

The control statements are discussed below:

v SYSUT1 DD defines the input data set, INJOBS. The data set resides on a
standard labeled tape volume (001234).

v SYSUT2 DD defines the output data set, called OUTTAPE. The data set is to
reside as the first data set on a standard labeled tape volume (001235). The
system will select an optimal block size.

v SYSIN DD defines the control data set, which follows in the input stream.

v EDIT indicates that JOBA is to be copied in its entirety.

IEBEDIT

104 z/OS V2R13.0 DFSMSdfp Utilities

Example 2: Copy Steps from Three Jobs
This example copies job steps from each of three jobs. The input data set contains
three jobs: JOBA, which includes STEPA, STEPB, STEPC, and STEPD; JOBB,
which includes STEPE, STEPF, and STEPG; and JOBC, which includes STEPH
and STEPJ.
//EDIT2 JOB ...
//STEP1 EXEC PGM=IEBEDIT
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=INJOBS,DISP=(OLD,KEEP),VOLUME=SER=001234,
// UNIT=tape
//SYSUT2 DD DSN=OUTSTRM,UNIT=tape,DISP=(NEW,KEEP),
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80),LABEL=(2,SL)
//SYSIN DD *

EDIT START=JOBA,TYPE=INCLUDE,STEPNAME=(STEPC,STEPD)
EDIT START=JOBB,TYPE=INCLUDE,STEPNAME=STEPE
EDIT START=JOBC,TYPE=INCLUDE,STEPNAME=STEPJ

/*

The control statements are discussed below:

v SYSUT1 DD defines the input data set, INJOBS. The data set resides on a
standard labeled tape volume (001234).

v SYSUT2 DD defines the output data set, OUTSTRM. The data set is to reside as
the second data set on a standard labeled tape volume (001235). The short
block size is very inefficient.

v SYSIN DD defines the control data set, which follows in the input stream.

v The EDIT statements copy the JOB statements and job steps described as
follows:
1. The JOB statement and steps STEPC and STEPD for JOBA.
2. The JOB statement and STEPE for JOBB.
3. The JOB statement and STEPJ for JOBC.

Example 3: Include Step from One Job, Exclude Step from Another
This example includes a job step from one job and excludes a job step from
another job. The input data set contains three jobs: JOBA, which includes STEPA,
STEPB, STEPC, and STEPD; JOBB, which includes STEPE, STEPF, and STEPG;
and JOBC, which includes STEPH and STEPJ.
//EDIT3 JOB ...
//STEP1 EXEC PGM=IEBEDIT
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=INSET,UNIT=disk,DISP=(OLD,KEEP),
// VOLUME=SER=111111
//SYSUT2 DD DSNAME=OUTTAPE,UNIT=tape,LABEL=(,NL),
// DCB=(DEN=2,RECFM=FB,LRECL=80,BLKSIZE=8160),
// DISP=(,KEEP)
//SYSIN DD *

EDIT START=JOBB,TYPE=INCLUDE,STEPNAME=(STEPF-STEPG)
EDIT START=JOBC,TYPE=EXCLUDE,STEPNAME=STEPJ

/*

The control statements are discussed below:

v SYSUT1 DD defines the input data set, INSET. The data set resides on a disk
volume (111111).

v SYSUT2 DD defines the output data set, OUTTAPE. The data set is to reside as
the first or only data set on an unlabeled (800 bits per inch) tape volume.

v SYSIN DD defines the control data set, which follows in the input stream.

v The EDIT statements copy JOB statements and job steps as described below:

IEBEDIT

Chapter 5. IEBEDIT (Edit Job Stream) Program 105

1. The JOB statement and steps STEPF and STEPG for JOBB.

2. The JOB statement and STEPH, excluding STEPJ, for JOBC.

Example 4: Copy Statement for JOBA and JOB STEPF
This example copies the JOB statement for JOBA, the job step STEPF, and all the
steps that follow it. The input data set contains one job (JOBA), which includes
STEPA through STEPL. Job steps STEPA through STEPE are not included in the
output data set.
//EDIT4 JOB ...
//STEP1 EXEC PGM=IEBEDIT
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=INSTREAM,UNIT=disk,
// DISP=(OLD,KEEP),VOLUME=SER=111111
//SYSUT2 DD DSNAME=OUTSTREM,UNIT=disk,
// DISP=(,KEEP),VOLUME=SER=222222,SPACE=(TRK,2)
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=24000),
//SYSIN DD *

EDIT START=JOBA,TYPE=POSITION,STEPNAME=STEPF
/*

The control statements are discussed below:

v SYSUT1 DD defines the input data set, INSTREAM. The data set resides on a
disk volume (111111).

v SYSUT2 DD defines the output data set, OUTSTREAM. The data set is to reside
on a disk volume (222222). Two tracks are allocated for the output data set.

v SYSIN DD defines the control data set, which follows in the input stream.

v EDIT copies the JOB statement for JOBA and job steps STEPF through STEPL.

Example 5: Copy Entire Input Data Set
This example copies the entire input data set. The record containing the characters
“..*” in columns 1 through 3 is converted to a “/*” statement in the output data set.
//EDIT5 JOB ...
//STEP1 EXEC PGM=IEBEDIT
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=OUTTAPE,UNIT=tape,
// VOLUME=SER=001234,DISP=(NEW,KEEP),
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DUMMY
//SYSUT1 DD DATA
//BLDGDGIX JOB ...
// EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//SYSIN DD *

BLDG INDEX=A.B.C,ENTRIES=10,EMPTY
..*
/*

The control statements are discussed below:

v SYSUT2 DD defines the output data set, OUTTAPE. The data set will be the first
data set on a tape volume (001234).

v SYSIN DD defines a dummy control data set.

v SYSUT1 DD defines the input data set, which follows in the input stream. The
job is stopped when the statement “/*” is encountered. (SYSUT1 therefore
includes the BLDGDGIX JOB statement, EXEC statement, SYSPRINT, DD1, and
SYSIN DD statements.)

IEBEDIT

106 z/OS V2R13.0 DFSMSdfp Utilities

Example 6: Copy Entire Data Set to Include New Delimiter
This example copies the entire input data set, including the JES2 control statement,
because a new delimiter (JP) has been coded. Otherwise, the “/*” in the JES2
control statement would have stopped the input.
//EDIT6 JOB ...
//STEP1 EXEC PGM=IEBEDIT
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=TAPEOUT,UNIT=tape,
// VOL=SER=001234,LABEL=(,SL),DISP=(NEW,KEEP)
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
//SYSIN DD DUMMY
//SYSUT1 DD DATA,DLM=JP
//LISTVTOC JOB ...
/*MESSAGE JOB NEEDS VOLUME 338000
//FSTEP EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A
//DD2 DD UNIT=disk,VOL=SER=338000,DISP=OLD
//SYSIN DD *

LISTVTOC FORMAT,VOL=disk=338000
/*

The control statements are discussed below:

v SYSUT2 DD defines the output data set, TAPEOUT. The data set will be the first
data set on a standard label tape volume (001234).

v SYSIN DD defines a dummy control data set.

v SYSUT1 DD defines the input data set, which follows in the input stream. The
DLM parameter defines characters JP to act as a delimiter for the input data.

v IEBEDIT copies the JOB statement through the “/*” statement (including the
LISTVTOC and MESSAGE job statements, FSTEP EXEC statement, and
SYSPRINT, DD2 and SYSIN DD statements).

IEBEDIT

Chapter 5. IEBEDIT (Edit Job Stream) Program 107

IEBEDIT

108 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 6. IEBGENER (Sequential Copy/Generate Data Set)
Program

You can use IEBGENER to perform the following tasks:

v Create a backup copy of a sequential data set, a member of a partitioned data
set or PDSE or a UNIX system services (USS) file such as a HFS file.

v Produce a partitioned data set or PDSE, or a member of a partitioned data set or
PDSE, from a sequential data set or a USS file.

v Expand an existing partitioned data set or PDSE by creating partitioned members
and merging them into the existing data set.

v Produce an edited sequential or partitioned data set or PDSE.

v Manipulate data sets containing double-byte character set data.

v Print sequential data sets, members of partitioned data sets or PDSEs or USS
files.

v Reblock or change the logical record length of a data set.

v Copy user labels on sequential output data sets. (See “Processing User Labels”
on page 345.)

v Supply editing facilities and exits for your routines that process labels, manipulate
input data, create keys, and handle permanent input/output errors. See
Appendix C, “Specifying User Exits with Utility Programs” on page 341, for a
discussion of linkage conventions for user exit routines.

Recommendation: If you have the DFSORT™ product installed, you should be
using ICEGENER as an alternative to IEBGENER when making an unedited copy
of a data set or member. It may already be installed in your system under the name
IEBGENER. It generally gives better performance.

Creating a Backup Copy
You can produce a backup copy of a sequential data set or member of a partitioned
data set or PDSE by copying the data set or member to any IBM-supported output
device. For example, a copy can be made from tape to tape, from DASD to tape,
and so forth.

A data set that resides on a direct access volume can be copied to its own volume,
provided that you change the name of the data set.

Restriction: When you use IEBGENER to process partitioned data sets as
sequential data sets, IEBGENER will not perform any directory entry processing (for
instance, copying attributes of members of load module libraries). IEBCOPY does
perform directory entry processing.

Producing a Partitioned Data Set or PDSE from Sequential Input
Through the use of utility control statements, you can logically divide a sequential
data set into record groups and assign member names to the record groups.
IEBGENER places the newly created members in an output partitioned data set or
PDSE.

You cannot produce a partitioned data set or PDSE if an input or output data set
contains spanned records.

© Copyright IBM Corp. 1979, 2002 109

Figure 19 shows how a partitioned data set or PDSE is produced from a sequential
data set used as input. The left side of the figure shows the sequential data set.
Utility control statements are used to divide the sequential data set into record
groups and to provide a member name for each record group. The right side of the
figure shows the partitioned data set or PDSE produced from the sequential input.

Adding Members to a Partitioned Data Set or PDSE
You can use IEBGENER to add members to a partitioned data set or PDSE.
IEBGENER creates the members from sequential input and adds them to the data
set. The merge operation—the ordering of the partitioned directory—is automatically
performed by the program.

Figure 20 on page 111 shows how sequential input is converted into members that
are merged into an existing partitioned data set or PDSE. The left side of the figure
shows the sequential input that is to be merged with the partitioned data set or
PDSE shown in the middle of the figure. Utility control statements are used to divide
the sequential data set into record groups and to provide a member name for each
record group. The right side of the figure shows the expanded partitioned data set
or PDSE. Note that members B, D, and F from the sequential data set were placed
in available space and that they are sequentially ordered in the partitioned directory.

LASTREC 1

LASTREC 2

LASTREC n

2

n

Record
group

1

Record
group

2

Record
group

n

Partitioned
output

Sequential
input

Utility control
statement names
first member

Utility control
statement names
new member

Utility control
statement identifies
last record

Utility control
statement names
new member

Directory
2 3 4 5 6 n

Member 1

1

LASTREC 1

LASTREC 2

LASTREC n

Utility control
statement identifies
last record

Figure 19. Creating a Partitioned Data Set or PDSE from Sequential Input Using IEBGENER

IEBGENER

110 z/OS V2R13.0 DFSMSdfp Utilities

Producing an Edited Data Set
You can use IEBGENER to produce an edited sequential or partitioned data set, or
PDSE. Through the use of utility control statements, you can specify editing
information that applies to a record, a group of records, selected groups of records,
or an entire data set.

An edited data set can be produced by:

v Rearranging or omitting defined data fields within a record.

v Supplying literal information as replacement data.

v Converting data from packed decimal to unpacked decimal mode, unpacked
decimal to packed decimal mode, or BCDIC (used here to mean the standard H
character set of binary coded decimal interchange code) to EBCDIC mode. For
more information on converting from BCDIC to EBCDIC, see z/OS DFSMS:
Using Data Sets.

v Adding or deleting shift-out/shift-in characters X'0E' and X'0F' when double-byte
character set data is contained in the data set.

Figure 21 on page 112 shows part of an edited sequential data set. The left side of
the figure shows the data set before editing is performed. Utility control statements
are used to identify the record groups to be edited and to supply editing information.
In this figure, literal replacement information is supplied for information within a
defined field. (Data is rearranged, omitted, or converted in the same manner.) The
BBBB field in each record in the record group is to be replaced by CCCC. The right
side of the figure shows the data set after editing.

Existing
data set

Expanded
data set

Sequential
input

Directory
A B C D E F G

Member A

C

E

G

A C E G
Directory

Member
A

C

E

G

B

D

F

Available space

Member
B

Member
D

Member
F

LASTREC

LASTREC

Utility control
statements define
record groups
name members

Figure 20. Adding Members to a Partitioned Data Set or PDSE Using IEBGENER

IEBGENER

Chapter 6. IEBGENER (Sequential Copy/Generate Data Set) Program 111

IEBGENER cannot be used to edit a data set if the input and output data sets
consist of variable spanned (VS) or variable blocked spanned (VBS) records and
have equal block sizes and logical record lengths. In these cases, any utility control
statements that specify editing are ignored. That is, for each physical record read
from the input data set, the utility writes an unedited physical record on the output
data set.

Changing Logical Record Length
You can use IEBGENER to produce a reblocked output data set containing either
fixed-length or variable-length records having a logical record length that differs
from the input logical record length.

When you create a data set with a logical record length that differs from that of the
input data set, you must specify where each byte in the output records is to come
(either from literals or from input records). Any unspecified fields will contain
unpredictable data. You cannot alter the logical record length if both the input and
output data sets have variable or variable blocked record formats.

Record
1

Record
2

Record
n

A
 A

 A
 A

 B
 B

 B
 B

 A
 A

 A
 A

 B
 B

 B
 B

 A
 A

 A

A
 A

 A
 A

 C
 C

 C
 C

 A
 A

 A
 A

 C
 C

 C
 C

 A
 A

 A

B
 B

 B
 A

 A
 A

 A
 B

 B
 B

 B

C
 C

 C
 A

 A
 A

 A
 C

 C
 C

 C

Utility Control statement.

Defines record group, contains
literal replacement data (CCCC).
Applies to all records within
the group.

Record
group

Figure 21. Editing a Sequential Data Set Using IEBGENER

IEBGENER

112 z/OS V2R13.0 DFSMSdfp Utilities

Using IEBGENER with Double-Byte Character Set Data
You can use IEBGENER to copy, edit, reblock, or print data sets that contain
double-byte character set (DBCS) data. You can also convert sequential data sets
containing DBCS data to partitioned data sets. Double-byte character sets are used
to represent languages too complex to be represented with a single-byte character
set. Japanese, for example, requires a double-byte character set.

DBCS data is typically enclosed in shift-out/shift-in X'0E' and X'0F' single-byte
characters to indicate that the data must be handled as pairs of bytes and not
single bytes. Shift-out indicates that the data is now shifting out of a single-byte
character set string and into a double-byte character set string, and shift-in indicates
that a double-byte character set string is shifting into a single-byte character set
string. You can add or delete the shift-out/shift-in characters using IEBGENER. If
you add them to a data set, however, you must account for the additional bytes
they will require when you determine the logical record length of the output data
set. You can also validate DBCS data using IEBGENER. DBCS data is not
considered “valid” unless each byte of every character has a value between X'41'
and X'FE', inclusive, or unless the DBCS character is a DBCS space (X'4040'). This
checking will ensure that each DBCS character is printable.

In order to print a data set containing DBCS data, the DBCS strings must be
enclosed in shift-out/shift-in characters.

Input and Output
IEBGENER uses the following input:

v An input data set, which contains the data that is to be copied, edited, converted
into a partitioned data set or PDSE, or converted into members to be merged
into an existing data set. The input is either a sequential data set or a member of
a partitioned data set or PDSE.

v A control data set, which contains utility control statements. The control data set
is required if editing is to be performed or if the output data set is to be a
partitioned data set or PDSE.

v The PARM parameter on the JCL EXEC statement or the dynamic invocation
equivalent (see “EXEC Statement” on page 114).

IEBGENER produces the following output:

v An output data set, which can be either sequential or partitioned. The output data
set can be either a new data set (created during the current job step) or an
existing partitioned data set or PDSE that was expanded. If a partitioned data set
or PDSE is created, it is a new member with a new directory entry. None of the
information is copied from the previous directory entry.

v A message data set, which contains informational messages (for example, the
contents of utility control statements) and any error messages.

Message IEC507D will be issued twice when adding data or members to an
existing data set which has an unexpired expiration date. This occurs because the
input and output data sets are opened twice.

If IEBGENER is invoked from an application program, you can dynamically allocate
the data sets by issuing SVC 99 before calling IEBGENER.

Messages issued by this utility are documented in z/OS MVS System Messages,
Vol 7 (IEB-IEE).

IEBGENER

Chapter 6. IEBGENER (Sequential Copy/Generate Data Set) Program 113

See Appendix A for IEBGENER return codes.

Control
You control IEBGENER with job and utility control statements. The job control
statements run IEBGENER and define the data sets that are used and produced by
the program. The utility control statements control the functions of IEBGENER.

Job Control Statements
Table 21 shows the job control statements for IEBGENER.

Table 21. Job Control Statements for IEBGENER

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEBGENER) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential data set for messages. The data set can be written
to a system output device, a tape volume, or a DASD volume.

SYSUT1 DD Defines the input data set. It can define a sequential data set, a member
of a partitioned data set or PDSE or a USS file.

SYSUT2 DD Defines the output data set. It can define a sequential data set, a
member of a partitioned data set or PDSE, a partitioned data set or
PDSE or a USS file.

SYSIN DD Defines the control data set, or specifies DUMMY when the output is
sequential and no editing is specified. The control data set normally
resides in the input stream; however, it can be defined as a member in a
partitioned data set or PDSE.

EXEC Statement
The EXEC statement is required for each use of IEBGENER.

You can code a value like: PARM=’SDB=xxxxx’ on the EXEC statement. This value
is effective only if the output block size is not supplied by any source. The system
calculates an optimal value through a function called “system-determined block
size”. This PARM value controls whether the block size can exceed 32 760 bytes.
SDB is the only valid parameter for the EXEC statement. You can code one of
these values for xxxxx.

INPUT or YES
If the input block size is greater than 32 760 bytes, the default output block
size greater than 32 760 bytes is permitted. Otherwise, it is not permitted.

SMALL
The default output block size is 32 760 bytes or less.

LARGE
The default output block size can be greater than 32 760 bytes. Older
programs cannot read data sets that have such large blocks.

NO The default output block size is 32 760 bytes or less, but the block size
might be less efficient than if you coded SMALL.

Your system programmer sets the default value for SDB by setting the COPYSDB
in the DEVSUPxx member in SYS1.PARMLIB. The IBM-supplied default for
COPYSDB is INPUT. Prior to OS/390 Version 2 Release 10, IEBGENER ignored a

IEBGENER

114 z/OS V2R13.0 DFSMSdfp Utilities

PARM value and operated as if SDB=NO had been coded. Currently, only magnetic
tape devices and dummy data sets allow a block size that exceeds 32 760 bytes.
Do not depend on that restriction. Future levels of operating systems might allow
larger blocks in more kinds of data sets.

The following conditions can cause your output data set to have a block size that
exceeds 32 760 bytes:

v You coded the BLKSIZE keyword on the DD statement and the device will
support the value.

v You coded DISP=MOD on the SYSUT2 DD statement if the output data set
exists and has a large BLKSIZE.

v The output device type supports a large block size, but you did not code one,
and SDB=LARGE is active.

v The output device type supports a large block size, but you did not code one.
The input data set has a large block size and SDB=INPUT is active.

Note: In the last two cases, the system limits the block size to a block size limit.
IEBGENER will never calculate a block size value that is too large for the
device. With fixed-blocked records, the block size limit does not have to be a
multiple of LRECL. The block size limit is the first one of these that is
available:

v BLKSZLIM keyword on the output DD statement.

v Block size limit in the data class, even if the data set is not
SMS-managed. You can code the DATACLAS keyword on the DD
statement, or the system’s ACS routines can assign a data class.

v TAPEBLKSZLM keyword in the DEVSUPxx member of SYS1.PARMLIB.
The system programmer sets this as a system default.

v 32 760 bytes.

Using multiple buffers for IEBGENER increases the amount of virtual storage that is
needed to run the program. You may need to change, or add, the REGION
parameter for the additional storage to avoid 80A abends.

The default for the number of buffers is five. You can override this by specifying
BUFNO or NCP on the SYSUT1 or SYSUT2 DD statement.

Before you run IEBGENER, you may need to calculate the region size (in virtual
storage) that is needed to run the program. Specify this value in the REGION
parameter.

You can calculate the region size by using the following formula:
region size = 50K + (2 + SYSUT1 BUFNO)*(SYSUT1 BLKSIZE) +

(2 + SYSUT2 BUFNO)*(SYSUT2 BLKSIZE)

If you do not use BUFNO in your JCL, use the default value of 5.

The following information, taken from “Example 5: Produce Blocked Copy on Tape
from Unblocked Disk File” on page 128, shows how to calculate the region size
needed:
SYSUT1 BUFNO = 20
SYSUT1 BLKSIZE = 2K
SYSUT2 BUFNO = Not specified, default is used
SYSUT2 BLKSIZE = 32K

IEBGENER

Chapter 6. IEBGENER (Sequential Copy/Generate Data Set) Program 115

region size = 50K + (2 + 20)*(2K) + (2 + 5)*(32K)

Therefore, region size = 318K (that is, REGION=318K).

SYSPRINT DD Statement
The SYSPRINT DD statement is required for each use of IEBGENER. The block
size for the SYSPRINT data set must be a multiple of 121. Any blocking factor can
be specified for this record size, but the maximum value for the block size is 32670
bytes.

SYSUT1 DD Statement
The input data set for IEBGENER, as specified in SYSUT1, can contain fixed,
variable, undefined, or variable spanned records. You cannot use concatenated
data sets with unlike attributes except for block size or device type as input to
IEBGENER. The rules for concatenating data sets on SYSUT1 are the same as
those for BSAM unless you are concatenating data sets on DASD and tapes. Then
the concatenating rules are the same as for QSAM. For information on
concatenated data sets for BSAM and QSAM, see z/OS DFSMS: Using Data Sets.

If the SYSUT1 data set is in the system input stream and contains JCL statements,
code SYSUT1 DD DATA and not SYSUT1 DD *.

Block size for the input data set must be available in the data set label (DSCB), or
tape label, or the DD statement. For a tape data set the block size can exceed
32 760 bytes.

The default record format is undefined (U) for the input data set. Record format
must be specified if the data set is new, undefined, or a dummy data set.

The input logical record length must be specified when the record format is fixed
blocked, variable spanned, or variable blocked spanned, or when the data set is
new, or a dummy data set. If the input and output logical record length are not
available and the record format is V or VB, IEBGENER sets the maximum record
length to the block size -4, with a maximum of 32 760. In all other cases, a default
logical record length of 80 is used.

A partitioned data set or PDSE cannot be produced if an input data set contains
spanned records.

If both the SYSUT1 and the SYSUT2 DD statements specify standard user labels
(SUL), IEBGENER copies user labels from SYSUT1 to SYSUT2. See “Processing
User Labels” on page 345, for a discussion of the available options for user label
processing.

SYSUT2 DD Statement
The output data set for IEBGENER, as specified in SYSUT2, can contain fixed,
variable, undefined, or variable spanned records (except partitioned data sets or
PDSEs, which cannot contain variable spanned records). These records can be
reblocked by the specification of a new maximum block length on the SYSUT2 DD
statement. If you are reblocking fixed-length or variable-length records, keys can be
retained only if you supply an exit routine to retain them. You cannot retain keys
when you reblock variable spanned records.

If the output data set is on a card punch or a printer, you must specify DCB
information on the SYSUT2 DD statement.

IEBGENER

116 z/OS V2R13.0 DFSMSdfp Utilities

|
|
|

When the data set is on DASD or tape and record format and logical record length
are not specified in the JCL for the output data set, and the data class does not
supply them, values for each are copied from the input data set.

Note: If you are using IEBGENER with an SMF dump data set, IEBGENER can
truncate your data. The SMF dump program, IFASMFDP, creates a data set
with a logical record length larger than IEBGENER allows. Thus, IEBGENER
will truncate the data set to a logical record length of 32 760, resulting in a
loss of 7 bytes. If you do not have actual data in those 7 bytes, you will lose
nothing in the truncation. However, care should be taken in using
IEBGENER with the SMF dump program.

The output block size need not be specified, if logical record length and record
format are specified or available for the input data set. If logical record length and
record format, but not block size, are specified for the SYSUT2 data set, the system
will give the data set an optimal block size. The EXEC statement, input data set,
and output device type affect the output block size. If the output device type is tape,
the block size can exceed 32 760 bytes. If you specify BLKSIZE, then SDB in the
PARM value on the EXEC statement will have no effect.

The output logical record length must be specified when editing is to be performed
and the record format is fixed blocked, variable spanned or variable blocked
spanned.

A partitioned data set or PDSE cannot be produced if an input or output data set
contains spanned records.

Table 22 shows the effect of the availability of RECFM, LRECL, and BLKSIZE in the
SYSUT2 DD statement.

Table 22. Effect of Output DD Statements. ″Available″ means that you coded it or that the
value is in the data set label or data class. (See “EXEC Statement” on page 114 for a
description of SDB.)

RECFM LRECL BLKSIZE Result

Available Available Available All are used.

Available Available Omitted Block size is determined by the system. (See
“EXEC Statement” on page 114 for a
description of SDB=).

Available Omitted Available LRECL is copied from the input unless
RECFM is fixed, unblocked, undefined, or
requires editing. The specified RECFM and
BLKSIZE are used.

Available Omitted Omitted LRECL is copied from the input unless
RECFM is fixed, unblocked, undefined, or
requires editing. If SDB=NO is in effect, then
IEBGENER copies BLKSIZE from the input
unless it is too large for the device. This might
be less efficient than if a different SDB value is
in effect. (See “EXEC Statement” on page 114
for a description of SDB=) .

Omitted Available Available RECFM is copied from the input. The specified
LRECL and BLKSIZE are used.

Omitted Available Omitted RECFM is copied from the input. The specified
LRECL is used. BLKSIZE is determined by
system.

IEBGENER

Chapter 6. IEBGENER (Sequential Copy/Generate Data Set) Program 117

Table 22. Effect of Output DD Statements (continued). ″Available″ means that you coded it
or that the value is in the data set label or data class. (See “EXEC Statement” on page 114
for a description of SDB.)

RECFM LRECL BLKSIZE Result

Omitted Omitted Available RECFM and LRECL are copied from the input,
but LRECL is not copied if RECFM is fixed,
unblocked, undefined, or requires editing.

Omitted Omitted Omitted All three are copied unless BLKSIZE is too
large for the device. In that case, the system
determines an optimal BLKSIZE.

SYSIN DD Statement
The SYSIN DD statement is required for each use of IEBGENER. The block size
for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified for this block size. If SYSIN is dummy, IEBGENER copies the input data
set sequentially.

Utility Control Statements
IEBGENER is controlled by utility control statements. The statements and the order
in which they must appear are listed in Table 23.

The control statements are included in the control data set as required. If no utility
control statements are included in the control data set, the entire input data set is
copied sequentially.

When the output is to be sequential and editing is to be performed, one
GENERATE statement and as many RECORD statements as required are used. If
you are providing exit routines, an EXITS statement is required.

When the output is to be partitioned, one GENERATE statement, one MEMBER
statement per output member, and RECORD statements, as required, are used. If
you are providing exit routines, an EXITS statement is required.

A continuation line must start in columns 4 to 16, and a nonblank continuation line
in column 72 is optional.

Table 23. IEBGENER Utility Control Statements

Statement Use

GENERATE Indicates the number of member names and alias names, record
identifiers, literals, and editing information contained in the control data
set.

EXITS Indicates that user routines are provided.

LABELS Specifies user-label processing.

MEMBER Specifies the member name and alias of a member of a partitioned data
set or PDSE to be created.

RECORD Defines a record group to be processed and supplies editing information.

GENERATE Statement
The GENERATE statement is required when: output is to be partitioned; editing is
to be performed; or user routines are provided or label processing is specified. The
GENERATE statement must appear before any other IEBGENER utility statements.
If it contains errors or is inconsistent with other statements, IEBGENER is ended.

IEBGENER

118 z/OS V2R13.0 DFSMSdfp Utilities

The syntax of the GENERATE statement is:

[label] GENERATE [,MAXNAME=n]
[,MAXFLDS=n]
[,MAXGPS=n]
[,MAXLITS=n]
[,DBCS={YES|NO}]

where:

MAXNAME=n
specifies a number, from 1 to 3276, that is greater than or equal to the total
number of member names and aliases appearing in subsequent MEMBER
statements. MAXNAME is required if there are one or more MEMBER
statements.

MAXFLDS=n
specifies a number, from 1 to 4095, that is greater than or equal to the total
number of FIELD parameters appearing in subsequent RECORD statements.
MAXFLDS is required if there are any FIELD parameters in subsequent
RECORD statements.

MAXGPS=n
specifies a number, from 1 to 2520, that is greater than or equal to the total
number of IDENT or IDENTG parameters appearing in subsequent RECORD
statements. MAXGPS is required if there are any IDENT or IDENTG
parameters in subsequent RECORD statements.

MAXLITS=n
specifies a number, from 1 to 2730, that is greater than or equal to the total
number of characters contained in the FIELD literals of subsequent RECORD
statements. Any DBCS characters used as literals on FIELD parameters count
as two characters each.

MAXLITS is required if the FIELD parameters of subsequent RECORD
statements contain literals. MAXLITS does not apply to literals used in IDENT
or IDENTG parameters.

DBCS={YES|NO}
specifies if the input data set contains double-byte character set data.

EXITS Statement
The EXITS statement is used to identify exit routines you want IEBGENER to use.
For a complete discussion of exit routines, see Appendix C, “Specifying User Exits
with Utility Programs” on page 341.

For a detailed discussion of the processing of user labels as data set descriptors,
and for a discussion of user label totaling, refer to “Processing User Labels” on
page 345.

IEBGENER

Chapter 6. IEBGENER (Sequential Copy/Generate Data Set) Program 119

The syntax of the EXITS statement is:

[label] EXITS [INHDR=routinename]
[,OUTHDR=routinename]
[,INTLR=routinename]
[,OUTTLR=routinename]
[,KEY=routinename]
[,DATA=routinename]
[,IOERROR=routinename]
[,TOTAL=(routinename,size)]

where:

INHDR=routinename
specifies the name of the routine that processes user input header labels.

OUTHDR=routinename
specifies the name of the routine that creates user output header labels.
OUTHDR is ignored if the output data set is partitioned.

INTLR=routinename
specifies the name of the routine that processes user input trailer labels.

OUTTLR=routinename
specifies the name of the routine that processes user output trailer labels.
OUTTLR is ignored if the output data set is partitioned.

KEY=routinename
specifies the name of the routine that creates the output record key. This
routine does not receive control when a data set consisting of variable spanned
(VS) or variable blocked spanned (VBS) type records is processed because no
processing of keys is permitted for this type of data.

DATA=routinename
specifies the name of the routine that modifies the physical record (logical
record for variable blocked type records) before it is processed by IEBGENER.

IOERROR=routinename
specifies the name of the routine that handles permanent input/output error
conditions.

TOTAL=(routinename,size)
specifies that a user exit routine is to be provided before writing each record.
The keyword OPTCD=T must be specified for the SYSUT2 DD statement.
TOTAL is valid only when IEBGENER is used to process sequential data sets.
These values must be coded:

routinename
specifies the name of your totaling routine.

size
specifies the number of bytes needed to contain totals, counters, pointers,
and so forth. Size should be coded as a whole decimal number.

LABELS Statement
The LABELS statement specifies if user labels are to be treated as data by
IEBGENER. For a detailed discussion of this option, refer to “Processing User
Labels” on page 345.

The LABELS statement is used when you want to specify that: no user labels are to
be copied to the output data set; user labels are to be copied to the output data set

IEBGENER

120 z/OS V2R13.0 DFSMSdfp Utilities

from records in the data portion of the SYSIN data set; or user labels are to be
copied to the output data set after they are modified by the user’s label processing
routines. If more than one valid LABELS statement is included, all but the last
LABELS statement are ignored.

The syntax of the LABELS statement is:

[label] LABELS [DATA={YES|NO|ALL|ONLY|INPUT}]

where:

DATA={YES|NO|ALL|ONLY|INPUT}
specifies if user labels are to be treated as data by IEBGENER. These values
can be coded:

YES
specifies that any user labels that are not rejected by a label processing
routine you have specified on the EXITS statement are to be treated as
data. Processing of labels as data ends in compliance with standard return
codes. YES is the default.

NO
specifies that user labels are not to be treated as data. In order to make
standard user label (SUL) exits inactive, NO must be specified when
processing input/output data sets with nonstandard labels (NSL).

ALL
specifies that all user labels in the group currently being processed are to
be treated as data. A return code of 16 causes IEBGENER to complete
processing the remainder of the group of user labels and to stop the job
step.

ONLY
specifies that only user header labels are to be treated as data. User
header labels are processed as data regardless of any return code. The job
ends upon return from the OPEN routine.

INPUT
specifies that user labels for the output data set are supplied as 80-byte
input records in the data portion of SYSIN. The number of input records that
should be treated as user labels must be identified by a RECORD
statement.

LABELS DATA=NO must be specified to make standard user labels (SUL) exits
inactive when input/output data sets with nonstandard labels (NSL) are to be
processed.

MEMBER Statement
The MEMBER statement is used when the output data set is to be partitioned. One
MEMBER statement must be included for each member to be created by
IEBGENER. The MEMBER statement provides the name and alias names of a new
member.

All RECORD statements following a MEMBER statement refer to the one named in
that MEMBER statement. If no MEMBER statements are included, the output data
set is organized sequentially.

IEBGENER

Chapter 6. IEBGENER (Sequential Copy/Generate Data Set) Program 121

The syntax of the MEMBER statement is:

[label] MEMBER NAME=(name[,alias 1][,alias 2][,...])

where:

NAME=(name[,alias][,...])
specifies a member name followed by a list of its aliases. If no aliases are
specified in the statement, the member name need not be enclosed in
parentheses.

RECORD Statement
The RECORD statement is used to define a record group and to supply editing
information. A record group consists of records that are to be processed identically.

The RECORD statement is used when: the output is to be partitioned; editing is to
be performed; or user labels for the output data set are to be created from records
in the data portion of the SYSIN data set. The RECORD statement defines a record
group by identifying the last record of the group with a literal name.

If no RECORD statement is used, the entire input data set or member is processed
without editing. More than one RECORD statement may appear in the control
statement stream for IEBGENER.

Within a RECORD statement, one IDENT or IDENTG parameter can be used to
define the record group; one or more FIELD parameters can be used to supply the
editing information applicable to the record group; and one LABELS parameter can
be used to indicate that this statement is followed immediately by output label
records.

If both output header labels and output trailer labels are to be contained in the
SYSIN data set, you must include one RECORD statement (including the LABELS
parameter), indicating the number of input records to be treated as user header
labels and another RECORD statement (also including the LABELS parameter) for
user trailer labels. The first such RECORD statement indicates the number of user
header labels; the second indicates the number of user trailer labels. If only output
trailer labels are included in the SYSIN data set, a RECORD statement must be
included to indicate that there are no output header labels in the SYSIN data set
(LABELS=0). This statement must precede the RECORD LABELS=n statement
which signals the start of trailer label input records.

For a further discussion of the LABELS option, refer to “Processing User Labels” on
page 345.

The syntax of the RECORD statement is:

[label] RECORD [{IDENT|IDENTG}=(length,'name',input-location)]
[,FIELD=([length],[{input-location|'literal'}],

[conversion],[output-location])][,FIELD=...]
[,LABELS=n]

where:

{IDENT|IDENTG}= (length,'name',input-location)
identifies the last record of a collection of records in the input data set. You use
this parameter to identify the last record to be edited according to the FIELD

IEBGENER

122 z/OS V2R13.0 DFSMSdfp Utilities

parameters on the same RECORD statement. If you are creating a partitioned
data set or PDSE, this parameter will identify the last record to be included in
the partitioned data set or PDSE member named in the previous MEMBER
statement. If the RECORD statement is not followed by additional RECORD or
MEMBER statements, IDENT or IDENTG also defines the last record to be
processed.

IDENT is used to identify a standard, single-byte character string. IDENTG is
used to identify a double-byte character string.

The values for IDENT or IDENTG can be coded:

length
specifies the length (in bytes) of the identifying name. The length of your
identifier cannot be greater than eight.

For IDENTG, the length must be an even number.

'name'
specifies the literal that identifies the last input record of a group of records.
'Name' must be coded within single apostrophes.

If you are using IDENTG, 'name' must be a double-byte character string.
The DBCS string must be enclosed in shift-out/shift-in (SO/SI) characters.
The SO/SI characters will not be considered part of the literal specified by
'name', and they should not be included in the count for length. IEBGENER
will disregard the SO/SI characters when it looks for a match for 'name'.

'Name' can be specified in hexadecimal. To do so, code 'name' as name .
Thus, if you do not have a keyboard that can produce certain characters,
you can specify them in their hexadecimal versions. The values of the
SO/SI characters are X'0E' and X'0F', respectively.

If no match for 'name' is found, the remainder of the input data is
considered to be in one record group; subsequent RECORD and MEMBER
statements will be ignored.

input-location
specifies the starting position of the field that contains the identifying name
in the input records. Input-location should be coded as a whole decimal
number.

If you do not specify IDENT or IDENTG, all of the input data is considered to be
in one record group. Only the first RECORD and MEMBER statements will be
used by IEBGENER.

FIELD=([length], [{input-location| 'literal'}], [conversion],[output-location])
specifies field-processing and editing information. Only the contents of specified
fields in the input record are copied to the output record; that is, any field in the
output record that is not specified will contain meaningless data.

Note that the variables on the FIELD parameter are positional; if any of the
options are not coded, the associated comma preceding that variable must be
coded.

The values that can be coded are:

length
specifies the length (in bytes) of the input field or literal to be processed. If
length is not specified, a length of 80 is assumed. If a literal is to be
processed, a length of 40 or less must be specified.

IEBGENER

Chapter 6. IEBGENER (Sequential Copy/Generate Data Set) Program 123

input-location
specifies the starting position of the field to be processed. Input-location
should be coded as a whole decimal number. If input-location is not
specified, it defaults to 1.

'literal'
specifies a literal (maximum length of 40 bytes) to be placed in the
specified output location. If a literal contains apostrophes, each apostrophe
must be written as two consecutive apostrophes.

You can specify a literal in hexadecimal by coding X'literal' You can also
specify a double-byte character set string as the literal.

conversion
specifies a code that indicates the type of conversion to be performed on
this field. If no conversion is specified, the field is moved to the output area
without change. The values that can be coded are:

CG
specifies that shift-out/shift-in characters are to be removed, but that
DBCS data is not to be validated. DBCS=YES must be specified on the
GENERATE statement.

CV
specifies that DBCS data is to be validated, and that the input records
contain single-byte character set data as well as double-byte.
DBCS=YES must be specified on the GENERATE statement.

GC
specifies that shift-out/shift-in characters are to be inserted to enclose
the DBCS data. DBCS=YES must be specified on the GENERATE
statement.

GV
specifies that DBCS data is to be validated, and that the DBCS data is
not enclosed by shift-out/shift-in characters. DBCS=YES must be
specified on the GENERATE statement.

HE
specifies that H-set BCDIC data is to be converted to EBCDIC.

PZ
specifies that packed decimal data is to be converted to unpacked
decimal data. Unpacking of the low-order digit and sign may result in an
alphabetic character. This maximum length of an input packed decimal
field is 16380 bytes.

VC
specifies that DBCS data is to be validated, and that shift-out/shift-in
characters are to be inserted to enclose the DBCS data. DBCS=YES
must be specified on the GENERATE statement.

VG
specifies that DBCS data is to be validated, and that shift-out/shift-in
characters are to be eliminated from the records. DBCS=YES must be
specified on the GENERATE statement.

ZP
specifies that unpacked decimal data is to be converted to packed
decimal data.

IEBGENER

124 z/OS V2R13.0 DFSMSdfp Utilities

|
|

When the ZP parameter is specified, the conversion is performed in
place. The original unpacked field is replaced by the new packed field;
therefore, the ZP parameter must be omitted from subsequent
references to that field. If the field is needed in its original unpacked
form, it must be referenced before the use of the ZP parameter.

If conversion is specified in the FIELD parameter, the length of the output
record can be calculated for each conversion specification. When L is equal
to the length of the input record, the calculation is made as follows:

v For a PZ (packed-to-unpacked) specification, 2L-1.

v For a ZP (unpacked-to-packed) specification, (L/2) + C. If L is an odd
number, C is 1/2; if L is an even number, C is 1.

v For an HE (H-set BCDIC to EBCDIC) specification, L.

v For the DBCS conversion codes, the shift-out/shift-in characters account
for one byte each. If you add or delete them, you will have to account for
the additional bytes.

output-location
specifies the starting location of this field in the output records.
Output-location should be coded as a whole decimal number.

If output-location is not specified, the location defaults to 1.

LABELS=n
is an optional parameter that indicates the number of records in the SYSIN data
set to be treated as user labels. The number n, which is a number from 0 to 8,
must specify the exact number of label records that follow the RECORD
statement. If this parameter is included, DATA=INPUT must be coded on a
LABELS statement before it in the input stream.

IEBGENER Examples
The examples that follow illustrate some of the uses of IEBGENER. Table 24 can
be used as a quick-reference guide to IEBGENER examples. The numbers in the
“Example” column refer to the examples that follow.

Table 24. IEBGENER Example Directory

Operation Data Set
Organization

Device Comments Example

PRINT Sequential Disk and Printer Data set is listed on a printer. 1

CONVERT Sequential to
Partitioned

Tape and Disk Blocked output. Three members are to
be created.

2

MERGE Sequential into
Partitioned

Disk Blocked output. Two members are to
be merged into existing data set.

3

COPY Sequential In-stream and
Tape

Blocked output. 4

Copy and reblock Sequential Disk and Tape Makes blocked tape copy from disk;
explicit buffer request.

5

COPY–with
editing

Sequential Tape Blocked output. Data set edited as one
record group.

6

COPY–with
editing

Sequential USS file to Disk Blocked output. New record length
specified for output data set. Two
record groups specified.

7

IEBGENER

Chapter 6. IEBGENER (Sequential Copy/Generate Data Set) Program 125

Table 24. IEBGENER Example Directory (continued)

Operation Data Set
Organization

Device Comments Example

COPY–with
DBCS validation

Sequential Disk DBCS data is validated and edited
before copying.

8

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

Example 1: Print a Sequential Data Set
In this example, a sequential data set is printed. The printed output is left-aligned,
with one 80-byte record appearing on each line of printed output.

//PRINT JOB ...
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT1 DD DSNAME=D80.DATA,DISP=SHR
//SYSUT2 DD SYSOUT=A

The job control statements are discussed below:

v SYSIN DD defines a dummy data set. Since no editing is performed, no utility
control statements are required.

v SYSUT1 DD defines the input sequential data set.

v SYSUT2 DD indicates that the output is to be written on the system output
device (printer). IEBGENER copies LRECL and RECFM from the SYSUT1 data
set and the system determines a BLKSIZE.

Example 2: Create a Partitioned Data Set from Sequential Input
In this example, a partitioned data set (consisting of three members) is created from
sequential input.

//TAPEDISK JOB ...
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=INSET,UNIT=tape,LABEL=(,SL),
// DISP=(OLD,KEEP),VOLUME=SER=001234
//SYSUT2 DD DSNAME=NEWSET,UNIT=disk,DISP=(,KEEP),
// VOLUME=SER=111112,SPACE=(TRK,(10,5,5)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
//SYSIN DD *

GENERATE MAXNAME=3,MAXGPS=2
MEMBER NAME=MEMBER1

GROUP1 RECORD IDENT=(8,’FIRSTMEM’,1)
MEMBER NAME=MEMBER2

GROUP2 RECORD IDENT=(8,’SECNDMEM’,1)
MEMBER NAME=MEMBER3

/*

The control statements are discussed below:

v SYSUT1 DD defines the input data set (INSET). The data set is the first data set
on a tape volume.

v SYSUT2 DD defines the output partitioned data set (NEWSET). The data set is
to be placed on a disk volume. Ten tracks of primary space, five tracks of
secondary space, and five blocks (256 bytes each) of directory space are

IEBGENER

126 z/OS V2R13.0 DFSMSdfp Utilities

allocated to allow for future expansion of the data set. The output records are
blocked to reduce the space required by the data set.

v SYSIN DD defines the control data set, which follows in the input stream. The
utility control statements are used to create members from sequential input data;
the statements do not specify any editing.

v GENERATE indicates that three member names are included in subsequent
MEMBER statements and that the IDENT parameter appears twice in
subsequent RECORD statements.

v The first MEMBER statement assigns a member name (MEMBER1) to the first
member.

v The first RECORD statement (GROUP1) identifies the last record to be placed in
the first member. The name of this record (FIRSTMEM) appears in the first eight
positions of the input record.

v The remaining MEMBER and RECORD statements define the second and third
members. Note that, as there is no RECORD statement associated with the third
MEMBER statement, the remainder of the input file will be loaded as the third
member.

Example 3: Convert Sequential Input into Partitioned Members
In this example, sequential input is converted into two partitioned members. The
newly created members are merged into an existing partitioned data set. User
labels on the input data set are passed to the user exit routine.

//DISKTODK JOB ...
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=INSET,UNIT=disk,DISP=(OLD,KEEP),
// VOLUME=SER=111112,LABEL=(,SUL)
//SYSUT2 DD DSNAME=EXISTSET,UNIT=disk,DISP=(MOD,KEEP),
// VOLUME=SER=111113

GENERATE MAXNAME=3,MAXGPS=1
EXITS INHDR=ROUT1,INTLR=ROUT2
MEMBER NAME=(MEMX,ALIASX)

GROUP1 RECORD IDENT=(8,’FIRSTMEM’,1)
MEMBER NAME=MEMY

The control statements are discussed below:

v SYSUT1 DD defines the input data set (INSET). The input data set, which
resides on a disk volume, has standard user labels.

v SYSUT2 DD defines the output partitioned data set (EXISTSET). The members
created during this job step are merged into the partitioned data set.

v The SYSIN DD statement is omitted. Because the GENERATE line does not
begin with //, the system assumes it is preceded by a //SYSIN DD * line. SYSIN
DD defines the control data set, which follows in the input stream. The utility
control statements are used to create members from sequential input data; the
statements do not specify any editing.A /* at the end of any DD * data set is
unnecessary because a JCL satement or end of the job stream marks the end of
the input stream data set.

v GENERATE indicates that a maximum of three names and aliases are included
in subsequent MEMBER statements and that one IDENT parameter appears in a
subsequent RECORD statement.

v EXITS defines the user routines that are to process user labels.

v The first MEMBER statement assigns a member name (MEMX) and an alias
(ALIASX) to the first member.

IEBGENER

Chapter 6. IEBGENER (Sequential Copy/Generate Data Set) Program 127

v The RECORD statement identifies the last record to be placed in the first
member. The name of this record (FIRSTMEM) appears in the first eight
positions of the input record.

v The second MEMBER statement assigns a member name (MEMY) to the second
member. The remainder of the input data set is included in this member.

Example 4: In-stream Input, Sequential Data Set to Tape Volume
In this example, an in-stream input, sequential data set is copied to a tape volume.

//CDTOTAPE JOB ...
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT2 DD DSNAME=OUTSET,UNIT=tape,LABEL=(,SL),
// DISP=(,KEEP),VOLUME=SER=001234,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
//SYSUT1 DD *
(in-stream data)
/*

The job control statements are discussed below:

v SYSIN DD defines a dummy data set. No editing is performed; therefore, no
utility control statements are needed.

v SYSUT2 DD defines the output data set, OUTSET. The data set is written to a
tape volume with IBM standard labels. The data set is to reside as the first (or
only) data set on the volume.

v SYSUT1 DD defines the in-stream data which is actually a JES SYSIN data set.
The data set contains no statements.

Example 5: Produce Blocked Copy on Tape from Unblocked Disk File
In this example, a blocked copy on tape is made from an unblocked sequential disk
file. Because the disk data set has a relatively small block size, the number of
buffers explicitly requested is larger than the default of five. This improves
performance by permitting more overlap of reading the SYSUT1 data set with
writing the SYSUT2 data set.

//COPYJOB JOB
//STEP1 EXEC PGM=IEBGENER,REGION=318K
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT1 DD DSNAME=INPUT,UNIT=disk,
// DISP=OLD,VOL=SER=X13380,
// DCB=(BUFNO=20,RECFM=F,LRECL=2000,BLKSIZE=2000)
//SYSUT2 DD DSNAME=OUTPUT,UNIT=tape,DISP=(NEW,KEEP),
// DCB=(RECFM=FB,LRECL=2000,BLKSIZE=32000)

The job control statements are discussed below:

v The EXEC statement names the IEBGENER program and specifies the virtual
storage region size required. (Calculation of region size is described in Table 15
on page 79.)

v The SYSIN DD statement is a dummy, since no editing is to be performed.

v The SYSUT1 DD statement identifies an input disk file. Normally, the DCB
RECFM, LRECL, and BLKSIZE information should not be specified in the DD
statement for an existing disk file because the information exists in the data set
label in the VTOC; it is specified in this example to illustrate the contrast with the
output data set. The unit and volume serial information could be omitted if the

IEBGENER

128 z/OS V2R13.0 DFSMSdfp Utilities

data set were cataloged. The DCB information specifies BUFNO=20 to allow up
to twenty blocks to be read with each rotation of the disk, assuming the disk
track will hold that many blocks.

v The SYSUT2 DD statement identifies the output tape data set and specifies a
block size of 32,000 bytes. The default of five buffers should be enough to keep
pace with the input.

Example 6: Edit and Copy a Sequential Input Data Set with Labels
In this example, a sequential input data set is edited and copied.

//TAPETAPE JOB ...
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=OLDSET,UNIT=tape,DISP=(OLD,KEEP),
// VOLUME=SER=001234,LABEL=(3,SUL)
//SYSUT2 DD DSNAME=NEWSET,UNIT=tape,DISP=(NEW,PASS),
// DCB=(RECFM=FB,LRECL=80),
// VOLUME=SER=001235,LABEL=(,SUL)
//SYSIN DD *

GENERATE MAXFLDS=3,MAXLITS=11
RECORD FIELD=(10,’**********’,,1),

FIELD=(5,1,HE,11),FIELD=(1,’=’,,16)
EXITS INHDR=ROUT1,OUTTLR=ROUT2
LABELS DATA=INPUT
RECORD LABELS=2

(first header label record)
(second header label record)

RECORD LABELS=2

(first trailer label record)
(second trailer label record)

/*

The control statements are discussed below:

v SYSUT1 DD defines the sequential input data set (OLDSET). The data set was
originally written as the third data set on a tape volume.

v SYSUT2 DD defines the sequential output data set (NEWSET). The data set is
written as the first data set on a tape volume. The output records are blocked to
reduce the space required by the data set and to reduce the access time
required when the data set is subsequently referred to. The BLKSIZE parameter
is omitted so that the system will calculate an optimal value that is less than or
equal to 32 760 bytes unless the system programmer sets the default differently.
See “EXEC Statement” on page 114The data set is passed to a subsequent job
step. The LABEL=(,SUL) is required because of the user labels created.

v SYSIN DD defines the control data set, which follows in the input stream.

v GENERATE indicates that a maximum of three FIELD parameters is included in
subsequent RECORD statements and that a maximum of 11 literal characters
are included in subsequent FIELD parameters.

v The first RECORD statement controls the editing, as follows: asterisks are placed
in positions 1 through 10; positions 1 through 5 of the input record are converted
from H-set BCDIC to EBCDIC mode and moved to positions 11 through 15; and
an equal sign is placed in position 16.

v EXITS indicates that the specified user routines require control when SYSUT1 is
opened and when SYSUT2 is closed.

v LABELS indicates that labels are included in the input stream.

IEBGENER

Chapter 6. IEBGENER (Sequential Copy/Generate Data Set) Program 129

v The second RECORD statement indicates that the next two records from SYSIN
should be written out as user header labels on SYSUT2.

v The third RECORD statement indicates that the next two records from SYSIN
should be written as user trailer labels on SYSUT2.

This example shows the relationship between the RECORD LABELS statement, the
LABELS statement, and the EXITS statement. IEBGENER tries to write a first and
second label trailer as user labels at close time of SYSUT2 before returning control
to the system; the user routine, ROUT2, can review these records and change
them, if necessary.

Example 7: Edit and Copy a Sequential USS File to a Sequential Data
Set

In this example,a USS (POSIX) file is edited and copied. The logical record length
of the output data set is less than that of the input data set.

//DISKDISK JOB ...
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD PATH=’/dist3/stor44/sales.mon’,FILEDATA=TEXT,PATHOPTS=ORDONLY,
// LRECL=100,BLKSIZE=1000,RECFM=FB
//SYSUT2 DD DSNAME=NEWSET,UNIT=disk,DISP=(NEW,KEEP),
// VOLUME=SER=111113,DCB=(RECFM=FB,LRECL=80,
// BLKSIZE=640),SPACE=(TRK,(20,10))
//SYSIN DD *

GENERATE MAXFLDS=4,MAXGPS=1
EXITS IOERROR=ERRORRT

GRP1 RECORD IDENT=(8,’FIRSTGRP’,1),FIELD=(21,80,,60),FIELD=(59,1,,1)
GRP2 RECORD FIELD=(11,90,,70),FIELD=(69,1,,1)
/*

The control statements are discussed below:

v SYSUT1 DD defines the input file. Its name is /dist3/stor44/sales.mon. It contains
text in 100–byte records. The record delimiter is not stated here. The file might
be on a non-System/390 system that is available via NFS, Network File System.

v SYSUT2 DD defines the output data set (NEWSET). Twenty tracks of primary
storage space and ten tracks of secondary storage space are allocated for the
data set on a disk volume. The logical record length of the output records is 80
bytes, and the output is blocked.

v SYSIN DD defines the control data set, which follows in the input stream.

v GENERATE indicates that a maximum of four FIELD parameters are included in
subsequent RECORD statements and that one IDENT parameter appears in a
subsequent RECORD statement.

v EXITS identifies the user routine that handles input/output errors.

Figure 22 on page 131 shows how a sequential input data set is edited and copied.

IEBGENER

130 z/OS V2R13.0 DFSMSdfp Utilities

v The first RECORD statement (GRP1) controls the editing of the first record
group. FIRSTGRP, which appears in the first eight positions of an input record, is
defined as being the last record in the first group of records. The data in
positions 80 through 100 of each input record are moved into positions 60
through 80 of each corresponding output record. (This example implies that the
data in positions 60 through 79 of the input records in the first record group are
no longer required; thus, the logical record length is shortened by 20 bytes.) The
data in the remaining positions within each input record are transferred directly to
the output records, as specified in the second FIELD parameter.

v The second RECORD statement (GRP2) indicates that the remainder of the input
records are to be processed as the second record group. The data in positions
90 through 100 of each input record are moved into positions 70 through 80 of
the output records. (This example implies that the data in positions 70 through 89
of the input records from group 2 are no longer required; thus, the logical record
length is shortened by 20 bytes.) The data in the remaining positions within each
input record are transferred directly to the output records, as specified in the
second FIELD parameter.

Example 8: Edit Double-Byte Character Set Data
In this example, an edited data set containing double-byte character set data is
created. Shift-out/shift-in characters (< and >) are inserted to enclose the DBCS
strings.

//DBLBYTE JOB ...
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=INPUT,DISP=(OLD,KEEP),UNIT=disk
//SYSUT2 DD DSN=OUTPUT,UNIT=disk,DISP=(NEW,CATLG),
// DCB=(LRECL=80,BLKSIZE=3200,RECFM=FB),SPACE=(TRK,(1,1))
//SYSIN DD *

GENERATE MAXFLDS=4,MAXLITS=9,DBCS=YES
RECORD FIELD=(20,1,,1),FIELD=(16,33,VC,21),

FIELD=(30,50,VC,39),FIELD=(9,’*********’,,72)
/*

The control statements are discussed below.

FIRSTGRP
SYSUT1
Input
Record

End of
File

Output Record Output Record

Group 1 Group 2

First
Record

First
Record

Last
Record

Last
Record

Marker

1 2 3 4 2 31

SYSUT2
Output
Record

59 60-80 Positions 1-69 70-80

Ignored

Positions
1-69 70-8960-79 80-100

Ignored

Positions 1-8

Ignored

Positions 1-59

Positions
1-59 90-100

Figure 22. How a Sequential Data Set is Edited and Copied

IEBGENER

Chapter 6. IEBGENER (Sequential Copy/Generate Data Set) Program 131

v SYSUT1 DD defines the input data set, INPUT, which resides on a disk volume.

v SYSUT2 DD defines the output data set, OUTPUT, which will reside on a disk
volume.

v SYSIN DD defines the control data set, which follows in the input stream.

v GENERATE indicates that a maximum of four FIELD parameters and nine literal
characters will appear on subsequent RECORD statements, and that the input
data set contains DBCS data.

v RECORD specifies how input records will be edited before being placed in the
output data set. The first FIELD parameter indicates that the first 20 positions
(bytes) of the input records are to be placed in the first 20 positions of the output
records.

v The second FIELD parameter indicates that data in positions 33 through 48 are
to be checked to ensure that they are valid DBCS data, and that shift-out/shift-in
characters are to be inserted around this field. For DBCS data to be valid, each
byte of the 2-byte characters must have a hexadecimal value between X'41' and
X'FE', or the 2-byte character must be a DBCS space (X'4040'). Once the
checking and inserting are completed, this field is to be copied to the output
records beginning at position 21.

v The third FIELD parameter operates on the 30-byte field beginning at position 50
in the input records. This field is checked for valid DBCS data, and
shift-out/shift-in characters are inserted around the field. The resulting field is
copied to the output records beginning at position 39.

Notice that in specifying the output locations in the FIELD parameter, you have to
account for the additional positions that the SO/SI characters will use. For instance,
the eight-character (16-byte) DBCS string beginning at position 21 does not end at
position 36, but at 38. The SO/SI characters are single-byte characters, so the pair
will take up two positions.

The final FIELD parameter clears out the final positions of the output records with
asterisks.

IEBGENER

132 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 7. IEBIMAGE (Create Printer Image) Program

IEBIMAGE is a data set utility that creates and maintains the following types of IBM
3800 Printing Subsystem and IBM 4248 printer modules and stores them in a
library:

v Forms control buffer modules for the 3800 and 4248 that specify controls for the
vertical line spacing and any one of 12 channel codes per line.

v Copy modification modules for the 3800 that specify data that is to be printed on
every page for specified copies of the output data set.

v Character arrangement table modules for the 3800 that translate the input data
into printable characters and identify the associated character sets and graphic
character modification modules.

v Graphic character modification modules for the 3800 that contain the scan
patterns of characters that you design or characters from IBM-supplied modules.

v Library character set modules for the 3800 that contain the scan patterns of
character sets that you define or IBM-supplied character sets.

The IEBIMAGE program creates and maintains all modules that are required for
use on the 3800 Model 1 and Model 3 printers. The program default is to build
these modules in the 3800 Model 1 format. However, 3800 Model 3 compatibility
can be specified with IEBIMAGE utility control statements.

You can also use IEBIMAGE to create and maintain FCB modules for the 4248
printer. These modules are compatible with the 3262 Model 5 printer. However, the
3262 Model 5 does not support variable printer speeds or the horizontal copy
feature of the 4248. Unless otherwise stated, where a reference to the 4248 printer
is used in this chapter, the 3262 Model 5 can be substituted.

For information on creating images for other types of printers, see z/OS DFSMSdfp
Advanced Services.

Storage Requirements for SYS1.IMAGELIB Data Set
The auxiliary storage requirement in tracks for SYS1.IMAGELIB is:
Number of tracks = (A + B) / T

where:

A is the number of 1403 UCS images, 3211 UCS images, 3211 FCB images,
3525 data protection images, 3890™ SCI programs, 3800 FCB modules,
4248 FCB images, 3262 Model 5 FCB images, 3800 character arrangement
tables and 3800 library character sets (including images or modules
supplied by you or IBM).

IBM supplies twelve 1403 UCS images, five 3211 UCS images, four 3211
FCB images, one 3800 FCB image, one 4245 UCS image table, one 4248
UCS image table, or eighty-four 3800 character arrangement tables, twenty
3800 Model 1 library character data sets, twenty 3800 Model 3, 6, and 8
library character sets, and graphic character modification modules.

Restriction: IBM supplies no 4245 or 4248 UCS images in
SYS1.IMAGELIB. The 4245 and 4248 printers load their own UCS images
into the UCS buffer at power-on time. IBM does supply 4245 and 4248 FCB
images, which may be used. For more information on printer-supplied UCS
or FCB images, see z/OS DFSMSdfp Advanced Services.

© Copyright IBM Corp. 1979, 2002 133

B is (V + 600) / 1500 for each 3800 graphic character modification module
and library character set module, each 3800 copy modification module,
4245 UCS image table, 4248 UCS image table, and each 3890 SCI
program that is more than approximately 600 bytes.

V is the virtual storage requirement in bytes for each module.

The virtual storage requirements for the IBM-supplied 3800 graphic
character modification module containing the World Trade National
Use Graphics are 32420 bytes for Model 1 and 55952 bytes for
Model 3, 6, and 8. The virtual storage requirements for the
IBM-supplied 3800 library character sets for the Model 1 are 4680
bytes and 8064 bytes for the Model 3, 6, and 8.

T is the approximate number of members per track, depending on type of
volume. Because of the overhead bytes and blocks in a load module, the
difference in space requirements for an 80-byte module and a 400-byte
module is small.

These constants assume an average member of 8 blocks, including a file
mark, with a total data length of 800 bytes. For example, on a 3380 with
523 bytes of block overhead, the assumed average is 4984 bytes. If a
different average member data length and average number of blocks per
member are anticipated, these constants should reflect the actual number
of members per track.

To determine the number of members per track, divide the average member
length, including block overhead, into the track capacity for the device (see
Table 25). (Track capacity for DASD is discussed in z/OS DFSMS Macro
Instructions for Data Sets.)

Table 25. Members per track (T) for various devices

T Device Type

17 3380, all models
20 3390, all models
16 9345, all models

The result, (A + B) / T, is the track requirement.

The number of directory blocks for SYS1.IMAGELIB is given by the formula:
Number of directory blocks = (A + C + D) / 6

where:

A is the same value as A in the track requirement calculation.

C is the number of modules used to calculate B, when calculating the track
requirement.

D is the number of aliases. The IBM-supplied 1403 UCS images have four
aliases and the IBM-supplied 3211 UCS images have six aliases. If you are
not going to use these aliases, you can scratch them after the system is
installed.

Maintaining the SYS1.IMAGELIB Data Set
You will normally maintain SYS1.IMAGELIB using several programs in conjunction
with IEBIMAGE. For example, you may find it necessary to rename or delete
modules or to compress or list the entire contents of the data set. Programs such
as PDF, DFSMSdss, IEBCOPY, IEBPTPCH, IEHLIST, and IEHPROGM should be

IEBIMAGE

134 z/OS V2R13.0 DFSMSdfp Utilities

used to help maintain SYS1.IMAGELIB. The program AMASPZAP can also be used
for diagnosis purposes, and is described in z/OS MVS Diagnosis: Tools and Service
Aids.

If you use programs other than IEBIMAGE for maintenance, you must specify the
full module name. The module’s full name consists of a 4-character prefix followed
by a 1- to 4-character name that you have assigned to it. It is thus a 5- to
8-character member name in the form:

FCB2xxxx an FCB module that may be used with a 3203, 3211, 3262 Model 5,
4248, or 4245 printer. Note that the 4248 accepts FCBs that will
also work with a 3203, 3211, 3262 Model 5, or 4245 printer. Also
note that FCB2 modules cannot be written using IEBIMAGE,
although IEBIMAGE can use FCB2 modules as input for creating
FCB4 modules. For information on maintaining and creating FCB2
modules, see z/OS DFSMSdfp Advanced Services.

FCB3xxxx a 3800 FCB module

FCB4xxxx an FCB module that may be used with a 4248 or 3262 Model 5
printer

MOD1xxxx a 3800 copy modification module

XTB1xxxx a 3800 character arrangement table module

GRAFxxxx a graphic character modification module for a 3800 Model 1

GRF2xxxx a graphic character modification module for a 3800 Model 3

LCS1nn a library character set module for a 3800 Model 1

LCS2nn a library character set module for a 3800 Model 3

where:

xxxx
is the 1- to 4-character user-assigned name of the module.

nn is the 2-character user-assigned ID of the module.

Alias names are not supported by IEBIMAGE, so you should be careful if you use
them. For example, if you change a module by specifying its alias name, the alias
name becomes the main name of the new module, and the old module is no longer
accessible via the alias but is still accessible via its original main name.

General Module Structure
Each module contains 8 bytes of header information preceding the data. For the
3800 printing subsystem, the general module header is shown in Figure 23 on
page 136.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 135

Header information for the 4248 printer FCB module is shown, with the module
format, in Figure 25 on page 138.

The SETPRT macro instruction uses the name to:
v Identify the module in the image library.
v Save the name to optimize future requests.

The SETPRT macro instruction uses the length to:
v Obtain sufficient storage for the module.
v Build channel programs to load the data into the printer.

Naming Conventions for Modules
Each module placed in a library by the IEBIMAGE utility has a 4-character
system-assigned prefix as the first part of its name. These prefixes are described
on 135.

You can assign a 1- to 4-character identifier (name) to the module you create by
using the NAME control statement in the operation group you use to build the
module. If the module is a library character set, the ID assigned to it must be
exactly 2 characters. Each of those characters must be within the range 0 through
9, and A through F; the second character must represent an odd hexadecimal digit.
However, the combinations X'7F' and X'FF' are not allowed. Except for library
character set modules, this identifier is used in the JCL, the SETPRT macro
instruction, or the character arrangement table to identify the module to be loaded.

While IEBIMAGE refers only to the 1- to 4-character name or the 2-character ID
(the suffix) that is appended to the prefix, the full name must be used when using
other utilities (such as IEBPTPCH or IEHPROGM).

Using IEBIMAGE

Creating a Forms Control Buffer Module
The forms control buffer (FCB) module is of variable length and contains vertical
line spacing information (6, 8, or 12 lines per inch for the 3800 Model 1; 6 or 8 lines
per inch for the 4248; and 6, 8, 10, or 12 lines per inch for the 3800 Model 3). The
FCB module can also identify one of 12 carriage-control channel codes for each
line. For the 4248 printer, the module also contains information on the horizontal
copy feature and the printer speed.

The FCB module is created and stored in an image library, using the FCB and
NAME utility control statements. For the 4248 FCB module, the INCLUDE and

Figure 23. 3800 General Module Header

IEBIMAGE

136 z/OS V2R13.0 DFSMSdfp Utilities

OPTION statements can also be coded to indicate that an existing FCB module
(prefix FCB2 or FCB4) is to be used as a model.

For the 3800, IBM supplies one default FCB image in SYS1.IMAGELIB, called
FCB3STD1. For the 4248, although the last FCB image loaded is reloaded by the
printer when the power is turned on, IBM supplies two FCB images that may also
be used by printers other than the 4248. For the 3262 Model 5, a default FCB
image is also supplied.

3800 FCB Module Structure
The FCB data following the header information is a series of 1-byte line control
codes for each physical line of the form. There are 18 to 144 of these bytes,
depending on the length of the form.

Each byte is a bit pattern describing one of 12 channel codes for vertical forms
positioning and one of four lines-per-inch codes for vertical line spacing. The
structure of the 3800 FCB module is shown in Figure 24.

v The top and bottom 1/2 inch of each page are unprintable, and the bytes
corresponding to these positions must be void of any channel codes. Three bytes
of binary zeros are supplied by the IEBIMAGE utility for the top and bottom 1/2
inch.

v The total number of lines defined in the module must be equal to the length of
the form. The printable lines defined must start 1/2 inch below the top and stop
1/2 inch from the bottom of the form.

4248 FCB Module Structure
The FCB data following the header information consists of at least five bytes: a flag
byte (X'7E'), a control byte (containing information about the horizontal copy feature
and printer speed), an offset byte, one or more FCB data bytes (similar to the 3800

Figure 24. 3800 FCB Module Structure

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 137

data byte for each physical line of the form), and an end-of-sheet byte (X'FE'). The
syntax of the 4248 FCB module is shown in Figure 25.

The control byte is a bit pattern describing whether the horizontal copy feature is
active and what printer speed is to be set when the FCB is loaded into the buffer.
The structure of the control byte is shown in Figure 26.

Notes to Figure 26

¹ IEBIMAGE sets these bits to zero. For more information on the stacker drop
rate and stacker level control bits, see the appropriate hardware manual for
your printer.

² If the module is used by a 3262 Model 5 printer, these bits are ignored.

Figure 25. 4248 FCB Module Structure

Figure 26. 4248 FCB Module Control Byte

IEBIMAGE

138 z/OS V2R13.0 DFSMSdfp Utilities

The offset byte follows the control byte and is set either to zero or to the print
position of the horizontal copy (2 through 168).

The data byte is a bit pattern similar to that produced for the 3800 printing
subsystem. Each data byte describes one of 12 channel codes for vertical forms
positioning and one of the allowed lines-per-inch codes for vertical line spacing. The
structure of the data byte is shown in Figure 27.

The total number of lines defined in the module must be equal to the length of the
form.

FCB Module Listing
Figure 28 on page 140 shows the IEBIMAGE listing of a 3800 FCB module. The
notes that follow the figure describe the encircled numbers in the figure.

For the 4248 FCB module, the IEBIMAGE listing also includes the horizontal copy
feature, printer speed setting, and default settings.

Figure 27. 4248 FCB Module Data Byte

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 139

Notes to Figure 28:
1. The line number. Each line of the form is listed in this way.
2. The vertical spacing of the line, in lines per inch.
3. The channel code, printed for each line that includes a channel code.

Figure 28. IEBIMAGE Listing of a Forms Control Buffer Module

IEBIMAGE

140 z/OS V2R13.0 DFSMSdfp Utilities

Creating a Copy Modification Module
The 3800 copy modification module contains predefined data for modifying some or
all copies of an output data set. Segments of the module contain predefined text, its
position on each page of the output data set, and the copy or copies the text
applies to.

The copy modification module is created and stored in an image library, using the
INCLUDE, OPTION, COPYMOD, and NAME utility control statements.

The INCLUDE statement identifies a module that is to be copied and used as a
basis for the newly created module. The OPTION statement with the OVERRUN
parameter allows you to suppress the printing of line overrun condition messages
for those vertical line spacings that are not applicable to the job. The OPTION
statement with the DEVICE parameter specifies 3800 Model 3 compatibility mode
processing. The COPYMOD statement is used to describe the contents of one of
the new module’s segments. The NAME statement is used to identify the new
module and to indicate whether it is new or is to replace an existing module with
the same name.

COPYMOD Module Structure
The copy modification data following the header information is a series of
segments. Each segment is of variable length and is composed of the components
shown in Figure 29.

A, B, C, D, E, and F are each 1-byte fields.

v If the module contains more than one segment, the starting copy number must
be equal to or greater than the starting copy number in the previous segment.

v Any string of the same character within the text may be compressed into 3 bytes.
The first such byte is X'FF', the second byte is the number of compressed
characters, and the third byte is the data code for the character.

v The size of the module is limited to 8192 bytes of data and 8 bytes of header
information.

COPYMOD Module Listing
Figure 30 shows the listing of three segments of a copy modification module. This
listing shows only the positioning of the modifying text. To print out the text itself,
you can use the IEBPTPCH utility program or the AMASPZAP service aid. The

Figure 29. Copy Modification Module Structure

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 141

numbered notes that follow the figure describe the items marked with the encircled
numbers.

Notes to Figure 30:

In this example, each note refers to the module’s third segment.

1. The name of the copy modification module as it exists in the SYS1.IMAGELIB
data set’s directory (including the 4-byte system-assigned prefix).

2. The segment number of the modification segment.

3. This segment applies only to the second copy of the output data set.

4. The text of the segment is located on lines 34, 35, and 36.

5. The text on each line starts at the 75th character, and occupies 10 character
spaces.

Creating a Character Arrangement Table Module
The 3800 character arrangement table module is fixed length and consists of three
sections:

v System control information, which contains the module’s name and length.

v The translation table, which contains 256 one-byte translation table entries,
corresponding to the 8-bit data codes (X'00' through X'FF'). A translation table
entry can identify one of 64 character positions in any one of four writable
character generation modules (WCGMs) except the last position in the fourth
WCGM (WCGM 3), which would be addressed by X'FF'. The code X'FF' is
reserved to indicate an unprintable character. When an entry of X'FF' is detected
by the printer as a result of attempting to translate an unusable 8-bit data code,
the printer prints a blank and sets the data-check indicator on (unless the
block-data-check option is in effect).

v Identifiers, which identify the character sets and the graphic character
modification modules associated with the character arrangement table.

For the 3800 Model 1 or Model 3, if the character set identifier is even, the
character set is accessed from the printer’s flexible disk. If the identifier is odd, the
character set is retrieved from the image library.

The character arrangement table is created using the INCLUDE, TABLE, and NAME
utility control statements. The INCLUDE statement identifies an existing character
arrangement table that is to be copied and used as a basis for the new module.
The TABLE statement describes the contents of the new or modified module. The

Figure 30. IEBIMAGE Listing of Three Segments of a Copy Modification Module

IEBIMAGE

142 z/OS V2R13.0 DFSMSdfp Utilities

NAME statement identifies the character arrangement table and indicates whether it
is new or is to replace an existing module with the same name.

The OPTION statement with the DEVICE=3800M3 parameter should be specified
when printing an existing character arrangement table for a 3800 Model 3. This is to
ensure that the system assigns the correct prefix to the graphic modification module
name associated with the character arrangement table.

For information on IBM-supplied character arrangement tables and character sets,
see IBM 3800 Printing Subsystem Programmer’s Guide.

Note: The character arrangement table you select mightnot include all the
characters in a character set. The character arrangement table corresponds
to a print train, which is sometimes a subset of one or more complete
character sets. When the character set is loaded, all characters of the set
(up to 64) are loaded into the printer’s WCGM; only those characters that are
referred to by a translation table can be printed.

TABLE Module Structure
The character arrangement table data following the header information is composed
of the following components:

v A 256-byte translation table

v Four 2-byte fields for codes identifying character sets and their WCGM sequence
numbers

v Four 4-byte fields for graphic character modification module names

The translation table consists of 256 one-byte entries, each pointing to one of 64
positions within one of four WCGMs:

v Bits 0 and 1 of each translation table byte refer to one of four WCGMs and bits 2
through 7 point to one of 64 addresses (0-63) within the WCGM. If SETPRT
loads a character set into a WCGM other than the WCGM called for, SETPRT,
using a copy of the translation table, alters bits 0 and 1 of each non-X'FF' byte of
the translation table to correspond with the WCGM loaded. Figure 31 describes
the structure of the character arrangement table module.

v A byte value of X'FF' indicates an unusable character, prints as a blank, and
gives a data check. The data check is suppressed if the block data check option
is selected.

v One translation table can address multiple WCGMs, and multiple translation
tables can address one WCGM. The translation tables supplied by IBM address
either one or two WCGMs.

0 1 2 3 4 5 6 7

These 6 bits reference one of 64 addresses
(0-63) in the WCGM

00 = WCGM0
01 = WCGM1
10 = WCGM2
11 = WCGM3

Figure 31. Character Arrangement Table Module Structure

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 143

The next two components provide the linkage to character sets and graphic
character modification modules. They consist of four 2-byte fields containing
character set IDs with their corresponding WCGM sequence numbers, followed by
four 4-character names of graphic character modification modules. The format is as
follows:

v Each CGMID is a 1-byte character set ID containing two hexadecimal digits that
refer to a library character set (as listed in IBM 3800 Printing Subsystem
Programmer’s Guide). Each WCGMNO refers to the corresponding WCGM
sequence (X'00' to X'03'). Each name is the 4-character name of a graphic
character modification module. Figure 32 shows the format of the Graphic
Character Modification Modules.

v Most of the standard character arrangement tables do not need graphic character
modification. The names are blank (X'40's) if no modules are referred to.

v The CGMIDx and the WCGMNOx are both X'00' when there are no character
sets referred to after the first one.

TABLE Module Listing
Figure 33 on page 145 shows the listing of a character arrangement table module.
The numbered notes that follow the figure describe the items marked with the
encircled numbers.

CGMID0 WCGMN00 CGMID1 WCGMN01

WCGMN03CGMID3

Name1

Name2

Name3

Name4

WCGMN02CGMID2

Figure 32. Graphic Character Modification Modules

IEBIMAGE

144 z/OS V2R13.0 DFSMSdfp Utilities

Notes to Figure 33:

1. The name of the character arrangement table module, as it exists in the
directory of the image library (including the 4-byte system-assigned prefix).

2. The 1-byte identifier of an IBM-supplied character set (in this example, the Text
1 and Text 2 character sets, whose identifiers are X'8F' and X'11').

All character sets in SYS1.IMAGELIB or a user-specified image library are
represented by odd-numbered identifiers. For a 3800 Model 3, if the character
set identifier specified is even-numbered, it is increased by one at print time and
the character set with that identifier is loaded.

3. The sequence number of the WCGM that is to contain the character set
indicated below it (in this example, the second WCGM, whose identifier is 1).

4. The sequence number of the WCGM that contains the scan pattern for the 8-bit
data code that locates this translation table entry.

Figure 33. IEBIMAGE Listing of a Character Arrangement Table Module

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 145

5. Your 8-bit data code X'B9' transmitted to the 3800 Model 3 addresses this, the
B9 location in the translation table, where the value X'39' in turn is the index
into the WCGM that contains the scan pattern to be used (in this example, the
Text 2 superscript 9).

6. An asterisk is shown in the listing for each translation table entry that contains
X'FF'. This indicates that the 8-bit data code that addresses this location does
not have a graphic defined for it and is therefore unprintable.

7. An asterisk in the list of character set identifiers indicates that no character set
is specified to use the corresponding WCGM. If you specify 7F or FF as a
character set identifier (to allow accessing a WCGM without loading it), a 7F or
FF prints here.

8. The name of a graphic character modification module, as the name exists in the
library’s directory (including the system-assigned prefix).

When you specify a graphic character modification module to be associated with
a character arrangement table, you must specify the OPTION statement with
the DEVICE parameter (for the 3800 Model 3) to ensure that the system
assigns the correct prefix (GRF2) to the graphic character modification module
name.

Creating a Graphic Character Modification Module
The 3800 graphic character modification module is variable length and contains up
to 64 segments. Each segment contains the 1 byte (for the 3800 Model 1) or 6
bytes (for the 3800 Model 3) of descriptive information and the 72-byte (for the
3800 Model 1) or 120-byte (for the 3800 Model 3) scan pattern of a graphic
character.

The graphic character modification module is created using the INCLUDE,
GRAPHIC, OPTION and NAME utility control statements.

The INCLUDE statement identifies an existing graphic character modification
module that is to be copied and used as a basis for the new module.

To create graphic character modification modules in the syntax of the 3800 Model 3
compatibility mode module, the OPTION statement with the DEVICE parameter is
required.

A GRAPHIC statement, when followed by one or more data statements, defines a
user-designed character. A GRAPHIC statement can also select a character
segment from another graphic character modification module. Each GRAPHIC
statement causes a segment to be created for inclusion in the new module.

The NAME statement identifies the new module and indicates that the module is to
be added to the library or is to replace an existing module of the same name. More
than one GRAPHIC statement can be coded between the INCLUDE and NAME
statements, and all such GRAPHIC statements apply to the same graphic character
modification module.

GRAPHIC Module Structure
The graphic character modification data following the header information is a series
of 73-byte segments for the 3800 Model 1 and 126-byte segments for the 3800
Model 3. A maximum of 64 such segments is allowed in a module. The module
structure is shown in Figure 34 on page 147.

IEBIMAGE

146 z/OS V2R13.0 DFSMSdfp Utilities

When a graphic character is to be modified, the 3800 uses the translation table
code to index into the translation table. The contents found at that location (a 1-byte
WCGM code) determine the WCGM location into which the scan pattern and
character data are to be placed.

For the 3800 Model 1 Printing Subsystem:

The 72-byte graphic definition that makes up the scan pattern for one character is
divided into twenty-four 3-byte groups. Each 3-byte group represents a horizontal
row of eighteen 1-bit elements (plus parity information).

For the 3800 Model 3: The 120-byte graphic definition that makes up the scan
pattern for one character is divided into forty 3-byte groups. Each 3-byte group
represents a horizontal row of twenty-four 1-bit elements.

GRAPHIC Module Listing
Figure 35 on page 148 shows an extract from a listing of a graphic character
modification module. This extract contains the listing of two segments of the
module. Each of the notes following the figure describes the item in the figure that
is marked with the encircled number.

Figure 34. 3800 Graphic Character Modification Module Structure for One Character

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 147

Notes to Figure 35:

1. The segment number of the character segment within the module.

2. The 8-bit data code for the character.

3. The pitch of the character.

4. The scan pattern for the character. A dollar sign ($) is printed instead of an
asterisk if the bit specified is out of the pitch range.

Creating a Library Character Set Module
The 3800 library character set module is a fixed-length module made up of 64
segments. Each segment contains the 73 bytes (for the 3800 Model 1) or 126 bytes
(for the 3800 Model 3) of information including the scan pattern of a graphic
character and a code (00-3F) that identifies the WCGM location into which the scan
pattern is to be loaded.

Figure 35. IEBIMAGE Listing of Two Segments of a Graphic Character Modification Module

IEBIMAGE

148 z/OS V2R13.0 DFSMSdfp Utilities

The library character set module is created using the INCLUDE, CHARSET and
NAME control statements.

The INCLUDE statement identifies an existing module.

The OPTION statement with the DEVICE parameter is required to create library
character set modules in the 3800 Model 3 compatibility mode module format.

A CHARSET statement, when followed by one or more data statements, defines a
user-designed character. A CHARSET statement can also select a character
segment from another library character set or from a graphic character modification
module.

The NAME statement specifies the ID of the character set being created and
indicates if it is to replace an existing module. More than one CHARSET statement
can be coded between the INCLUDE and NAME statements; all such CHARSET
statements apply to the same library character set module.

CHARSET Module Structure
The library character set data following the header information is a series of 73-byte
segments for the 3800 Model 1 and 126-byte segments for the 3800 Model 3. Each
module contains 64 segments. For each segment left undefined in a library
character set module, IEBIMAGE inserts the graphic symbol for an undefined
character. The structure of a library character set module is shown in Figure 36.

A library character set is loaded directly into a WCGM. SETPRT uses the 6-bit code
contained in the first byte of each 73-byte segment (for the 3800 Model 1) or
126-byte segment (for the 3800 Model 3) as the address of the WCGM location into
which the remaining 72 bytes (for the 3800 Model 1) or 125 bytes (for the 3800
Model 3) are loaded.

For the 3800 Model 1: The 73-byte graphic definition that makes up the scan
pattern for one character is divided into twenty-four 3-byte groups. Each 3-byte
group represents a horizontal row of eighteen 1-bit elements.

Figure 36. 3800 Model 3 Library Character Set Module Structure for One Character

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 149

For the 3800 Model 3: The 126-byte graphic definition that makes up the scan
pattern for one character is divided into forty 3-byte groups. Each 3-byte group
represents a horizontal row of twenty-four 1-bit elements.

CHARSET Module Listing
Figure 37 shows an extract from a listing of a library character set module. This
extract contains the listing of two segments of the library character set. The
numbered notes that follow the figure describe the items marked with the encircled
numbers.

Notes to Figure 37:

1. The name of the library character set module, including the 4-byte
system-assigned prefix.

2. The segment number of the character segment within the module.

3. The 6-bit code for the WCGM location.

4. The pitch of the character.

Figure 37. IEBIMAGE Listing of Two Segments of a Library Character Set

IEBIMAGE

150 z/OS V2R13.0 DFSMSdfp Utilities

5. The scan pattern for the character. A dollar sign ($) is printed instead of an
asterisk if the bit specified is out of the pitch range.

Input and Output
IEBIMAGE uses the following input:
v A control data set that contains utility control statements
v Source statements produced by the Character Conversion Aid

IEBIMAGE produces the following output:

v A new module or modules for use with the 3800 Model 1 and Model 3 printers,
3262 Model 5 printer, or the 4248 printer, to be stored in an image library. These
may be of one of the following types:
– Forms control buffer modules (3800 or 4248)
– Copy modification modules (3800 only)
– Character arrangement table modules (3800 only)
– Graphic character modification modules (3800 only)
– Library character set modules (3800 only)

Note that, in building a 4248 FCB module, either a 4248 (prefix FCB4) or a 3211
(prefix FCB2) format FCB may be used as input. IEBIMAGE prefixes the name
with FCB4 first; then, if no module exists with that name, the prefix is changed to
FCB2. However, you cannot use IEBIMAGE to create an FCB2 module as
output.

v An output data set listing for each new module, which includes:
– Module identification
– Utility control statements used in the job
– Module contents
– Messages and return codes

See Appendix A for IEBIMAGE return codes.

Control
IEBIMAGE is controlled by job and utility control statements.

Job Control Statements
Table 26 shows the job control statements for IEBIMAGE.

Table 26. Job Control Statements for IEBIMAGE

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEBIMAGE) or, if the job control
statements reside in the procedure library, the procedure name. No
PARM parameters can be specified.

SYSPRINT DD Defines the sequential message data set used for listing statements and
messages on the system output device.

SYSUT1 DD Defines the library data set (SYS1.IMAGELIB or a user-defined library).

SYSIN DD Defines the control data set, which normally resides in the input stream.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 151

SYSPRINT DD Statement
The block size for the SYSPRINT data set should be 121 or a multiple of 121. Any
blocking factor can be specified. The first character of each 121-byte output record
is an ISO/ANSI control character.

SYSUT1 DD Statement
To ensure that the library data set is not updated by other jobs while the IEBIMAGE
job is running, DISP=OLD should be specified on the SYSUT1 DD statement.

SYSUT1 DD may specify a user image library. This library must have the same
characteristics as SYS1.IMAGELIB, and can subsequently be identified to the
system with the SETPRT macro instruction, or renamed “SYS1.IMAGELIB”. If you
are using JES, you cannot specify a user image library with SETPRT. For
information about using your own image library with the 3800 Printing Subsystem,
see IBM 3800 Printing Subsystem Programmer’s Guide. For information on
SETPRT, see z/OS DFSMS Macro Instructions for Data Sets.

SYSIN DD Statement
The block size for the SYSIN data set must be 80 or a multiple of 80. Any blocking
factor can be specified. DCB information for the SYSIN DD statement should be
omitted from the JCL.

Utility Control Statements
IEBIMAGE is controlled by the utility control statements listed in Table 27.

Continuation requirements for utility control statements are discussed in “Continuing
Utility Control Statements” on page 8.

Table 27. Utility Control Statements for IEBIMAGE

Statement Use

FCB Creates a 3800 or 4248 forms control buffer module and stores it in an
image library.

COPYMOD Creates a 3800 copy modification module and stores it in an image
library.

TABLE Creates a 3800 character arrangement table module and stores it in an
image library.

GRAPHIC Creates a 3800 graphic character modification module and stores it in an
image library.

CHARSET Creates a 3800 library character set module and stores it in an image
library.

INCLUDE Identifies an existing image library module to be copied and used as a
basis for the new module.

NAME Specifies the name of a new or existing library module.

OPTION Specifies optional 3800 Model 3 or 4248 printer compatibility, or
COPYMOD overrun lines per inch for an IEBIMAGE job.

Operation Groups
IEBIMAGE utility control statements are grouped together to create or print a library
module. Each group of statements is called an operation group. Your job’s input
stream can include many operation groups. The operation groups (shown below
without operands) that can be coded are:

v To create or print an FCB module:

IEBIMAGE

152 z/OS V2R13.0 DFSMSdfp Utilities

[OPTION]
[INCLUDE]
FCB
NAME

Note: It is not possible to print a 4248 FCB module without coding some valid
operation on the FCB statement.

v To create or print a copy modification module:
[INCLUDE]
[OPTION]
COPYMOD
[additional COPYMOD statements]
NAME

v To create or print a character arrangement table module:
[INCLUDE]
[OPTION]
TABLE
NAME

v To create or print a graphic character modification module:
[INCLUDE]
[OPTION]
{GRAPHIC|GRAPHIC, followed immediately by data statements}
[additional GRAPHIC statements]
NAME

v To create or print a library character set module:
[INCLUDE]
[OPTION]
{CHARSET|CHARSET, followed immediately by data statements}
[additional CHARSET statements]
NAME

To print a module, you need only supply the function statement (that is, FCB,
COPYMOD, TABLE, GRAPHIC or CHARSET) with no operands specified, followed
by the NAME statement naming the module. However, it is not possible to print a
4248 FCB module without coding some valid operation on the FCB statement.

FCB Statement
The FCB statement specifies the contents of a forms control buffer (FCB) module
for the 3800, 3262 Model 5, or 4248 printer: spacing codes (lines per inch), channel
codes (simulated carriage-control channel punches), and the size of the form. For
the 4248 printer, the FCB statement also specifies print position for the horizontal
copy feature and printer speed, and whether the FCB image is to be used as a
default.

The FCB statement must always be followed by a NAME statement, and can only
be preceded by an INCLUDE statement if DEVICE=4248 is specified on an
OPTION statement.

An FCB statement with no operands specified, followed by a NAME statement that
identifies a 3800 FCB module in the image library, causes the module to be
formatted and printed. 3262 Model 5 and 4248 FCB modules cannot be printed by
the FCB statement unless a valid operation is performed on them. To build an FCB
module, you code the FCB statement with at least one operand. The format of a
printed FCB module is shown in “FCB Module Listing” on page 139.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 153

The syntax of the FCB statement is:

[label] FCB [LPI=((l[,n])[,(l[,n])[,...]])]
[,CHx=(line[,line[,...]])[,CHx=(line[,line[,...]])[,...]]
[,SIZE=length]
[,LINES=lines]
[,COPYP=position]
[,PSPEED={L|M|H|N}]
[,DEFAULT={YES|NO}]

Note: COPYP, PSPEED and DEFAULT can only be specified for a 4248 FCB module

where:

LPI=((l[,n]) [,(l[,n])[,...]])
specifies the number of lines per inch and the number of lines to be printed at
that line spacing.

l specifies the number of lines per inch, and can be 6, 8, or 12 (for the 3800
Model 1); 6 or 8 (for the 3262 Model 5 or 4248); or 6, 8, 10, or 12 (for the
3800 Model 3).

n specifies the number of lines at a line spacing of l. When the printer uses
common-use paper sizes, n is a decimal value from 1 to 60 when l is 6;
from 1 to 80 when l is 8; from 1 to 100 when l is 10; and from 1 to 120
when l is 12.

When the printer uses ISO paper sizes, n is a value from 1 to 66 when l is
6; from 1 to 88 when l is 8; from 1 to 110 when l is 10; or from 1 to 132
when l is 12. For the paper sizes, see IBM 3800 Printing Subsystem
Programmer’s Guide.

It is your responsibility to ensure that the total number of lines specified results
in a length that is a multiple of 1/2 inch. That is 1.27cm.

The total number of lines cannot result in a value that exceeds the usable
length of the form. For the 3800, do not specify coding for the top and bottom
1/2 inch of the form; IEBIMAGE does this for you.

When the SIZE, LINES, and LPI parameters are specified in the FCB
statement, each parameter value is checked against the others to ensure that
there are no conflicting page-length specifications. For example, SIZE=35
specifies a 3-1/2 inch length; acceptable LPI values for the 3800 cannot define
more than the printable 2-1/2 inches of this length.

When you specify more than one (l,n) pair, l must be specified for each pair and
n must be specified for each pair except the last.

When you specify 12 lines per inch, use one of the condensed character sets. If
other character sets are printed at 12 lines per inch, the tops or bottoms of the
characters may not print.

When only l is specified, or when l is the last parameter in the LPI list, all
remaining lines on the page are at l lines per inch.

When LPI is not specified, all lines on the page are at 6 lines per inch.

IEBIMAGE

154 z/OS V2R13.0 DFSMSdfp Utilities

If the total number of lines specified is less than the maximum number that can
be specified, the remaining lines default to 6 lines per inch.

If INCLUDE is specified, the value for LPI may be taken from the included FCB
module. See the discussion on the module name parameter for the INCLUDE
statement.

CHx=(line[,line [,...]])
specifies the channel code (or codes) and the line number (or numbers) to be
skipped to when that code is specified.

CHx
specifies a channel code, where x is a decimal integer from 1 to 12.

line
specifies the line number of the print line to be skipped to, and is expressed
as a decimal integer. The first printable line on the page is line number 1.

The value of line cannot be larger than the line number of the last printable
line on the form.

Only one channel code can be specified for a print line. However, more than
one print line can contain the same channel code.

Conventions:

v Channel 1 is used to identify the first printable line on the form. The job entry
subsystem and the CLOSE routines for direct allocation to the 3800 with
BSAM or QSAM require a channel 1 code even when the data being printed
contains no skip to channel 1.

v Channel 9 is used to identify a special line. To avoid I/O interruptions that are
caused by use of channel 9, count lines to determine the line position.

v Channel 12 is used to identify the last print line on the form to be used. To
avoid I/O interruptions that are caused by use of channel 12, count lines to
determine the page size.

v Use of an FCB that lacks a channel code to stop a skip operation causes a
data check at the printer when the corresponding skip is issued. This data
check cannot be blocked.

If INCLUDE is specified, values for CHx may be taken from the included FCB
module. See the discussion under the module name parameter for the
INCLUDE statement.

SIZE=length
specifies the vertical length of the form, in tenths of an inch. See IBM 3800
Printing Subsystem Programmer’s Guide for the allowable lengths for the 3800.
The complete length of the form is specified (for example, with the 3800,
SIZE=110 for an 11-inch form) even though the amount of space available for
printing is reduced by the 1/2-inch top and bottom areas where no printing
occurs.

When the SIZE, LINES and LPI keywords are specified in the FCB statement,
each parameter value is checked against the others to ensure that there are no
conflicting page-length specifications. For example, SIZE=35 specifies a 3-1/2
inch length; acceptable LPI values for the 3800 cannot define more than the
printable 2-1/2 inches of this length.

When SIZE is not specified, the form length defaults to the value specified in
LINES. If LINES is not specified, SIZE is assumed to be 11 inches (110).

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 155

If INCLUDE is specified, the value for SIZE may be taken from the included
FCB module. See the discussion under the module name parameter for the
INCLUDE statement.

LINES=lines
specifies the total number of lines to be contained in an FCB module.

lines
is the decimal number, from 1 to 256, which indicates the number of lines
on the page.

When the LINES, SIZE, and LPI parameters are specified in the FCB
statement, each parameter value is checked against the others to ensure that
there are no conflicting page-length specifications.

When LINES is not specified, the form length defaults to the value of LPI
multiplied by the value of SIZE, in inches. If no SIZE parameter is specified,
LINES defaults to 11 times the value of LPI.

If INCLUDE is specified, the value for LINES may be taken from the included
FCB module. See the discussion under the module name parameter of the
INCLUDE statement.

COPYP=position
specifies the position (the number of character spaces from the left margin) at
which the horizontal copy is to begin printing.

position
is a decimal number, from 2 to 168, which indicates where the horizontal
copy printing will start. If your 4248 printer has only 132 print positions, the
maximum number you should specify here is 132.

If COPYP=0 is coded, any COPYP value previously set in an included FCB
module is overridden, and the horizontal copy feature is turned off. You may
not specify COPYP=1.

If INCLUDE is specified, and the included FCB module is formatted for a 4248
printer only, the default is the COPYP value for the included FCB module.
Otherwise, if no COPYP value is specified, the default value is 0.

COPYP is not valid for 3800 FCB modules; it is ignored for 3262 Model 5 FCB
modules.

The COPYP value specified affects the maximum amount of data that may be
sent to the printer. Channel programs that are run with the horizontal copy
feature activated must set the suppress incorrect length (SIL) bit and have a
data length that does not exceed the size of either one half the number of print
positions or the smaller of the two copy areas.

PSPEED={L|M|H|N}
specifies the print speed for the 4248 printer. Note that printer speed affects the
quality of printing; LOW speed provides the best quality.

L or LOW
sets the printer speed to 2200 lines per minute (LPM).

M or MEDIUM
sets the printer speed to 3000 LPM.

IEBIMAGE

156 z/OS V2R13.0 DFSMSdfp Utilities

H or HIGH
sets the printer speed to 3600 LPM.

N or NOCHANGE
indicates that the current printer speed should remain unchanged.

If INCLUDE is specified, and the included module is formatted for a 4248 printer
only, the default is the PSPEED value for the included FCB module. Otherwise,
the default is NOCHANGE (or N).

PSPEED is not valid for 3800 FCB modules. PSPEED is ignored for 3262
Model 5 FCB modules.

DEFAULT={YES|NO}
specifies if this 4248 FCB image is to be treated as the default image by OPEN
processing. Default images are used by the system for jobs that do not request
a specific image.

If a job does not request a specific FCB image, and the current image is not a
default, the operator will be prompted for an FCB image at OPEN time.

If INCLUDE is used to copy a 4248 FCB module that was originally specified as
a default image, the new module will also be considered a default image unless
DEFAULT=NO is now specified.

DEFAULT is not valid for 3800 FCB images.

COPYMOD Statement
A copy modification module consists of header information, followed by one or more
modification segments. The header information contains the module’s name and
length. Each modification segment contains the text to be printed, identifies the
copy (or copies) the text applies to, and specifies the position of the text on each
page of the copy.

A COPYMOD statement specifies the contents of one of the modification segments
of a copy modification module. More than one COPYMOD statement can be coded
in an operation group; all COPYMOD statements so coded apply to the same copy
modification module.

IEBIMAGE analyzes the modification segments specified for a copy modification
module to anticipate line overrun conditions that may occur when the module is
used in the printer. A line overrun condition occurs when the modification of a line is
not completed in time to print that line. The time available for copy modification
varies with the vertical line spacing (lines per inch) at which the printer is being
operated.

When IEBIMAGE builds a copy modification module from your specifications, the
program calculates an estimate of the time the modification will require during the
planned printing. If the modification can be done in the time available for printing a
line at 12 LPI (lines per inch), it can also be done at 6 or 8 LPI (for the Model 1), or
6, 8, or 10 LPI (for the Model 3). (Note that 6, 8, 10 and 12 LPI are the only print
densities available on the 3800 Model 3 printer.) However, if the copy modification
module being built is too complex to be done in the time available for printing a line
at 6 LPI, it certainly cannot be done at 8, 10 (for the Model 3 only), or 12 LPI. (Note
that at 10 and 12 LPI there is much less time available for printing a line than at 6
LPI.)

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 157

When IEBIMAGE determines that a copy modification module is likely to cause an
overrun if it is used when printing at a specified number of lines per inch, the
program produces a warning message to that effect. If the warning applies to 6 LPI,
the overrun condition is also applicable to 8, 10 (for the Model 3 only), and 12 LPI.
If the warning applies to 8 LPI, the condition is also applicable for 10 (for the Model
3 only) and 12 LPI. If the warning applies to 10 LPI, the condition also applies to 12
LPI.

If you are planning to use a particular copy modification module only while printing
at 6 LPI, you can request suppression of the unwanted warning messages for 8, 10
(for the Model 3 only), and 12 LPI by specifying the OPTION statement with 6 as
the value of the OVERRUN parameter. If you are planning to print only at 8 LPI,
you can use the OPTION statement with OVERRUN=8 to request suppression of
the unwanted warning messages for 10 (for the Model 3 only) and 12 LPI. For more
information on coding OVERRUN, see “Using OVERRUN” on page 169. For
information about using your copy modification module, see IBM 3800 Printing
Subsystem Programmer’s Guide. The copy modification text can be printed using
the same character size or style, or one different from the size or style used to print
the data in the output data set.

The COPYMOD statement must always be followed by a NAME statement or
another COPYMOD statement and can be preceded by an INCLUDE statement.
When more than one COPYMOD statement is coded, IEBIMAGE sorts the
statements into order by line number within copy number. A COPYMOD statement
with no operands specified, followed by a NAME statement that identifies a copy
modification module, is used to format and print the module. The syntax of the
printed module is shown under “COPYMOD Module Listing” on page 141.

The syntax of the COPYMOD statement, when used to create a copy modification
module’s segment, is:

[label] COPYMOD COPIES=(starting-copy[,copies])

,LINES=(starting-line[,lines])
,POS=position
,TEXT=(([d]t,'text') [,([d]t,'text')][,...])

where:

COPIES=(starting-copy[,copies])
specifies the starting copy number and the total number of copies to be
modified.

starting-copy
specifies the starting copy number and is expressed as a decimal integer
from 1 to 255. The starting-copy value is required.

copies
specifies the number of copies that are to contain the modifying text and is
expressed as a decimal integer from 1 to 255. When copies is not
specified, the default is 1 copy.

The sum of starting-copy and copies cannot exceed 256 (255 for JES3).

LINES=(starting-line[,lines])
specifies the starting line number and the total number of lines to be modified.

IEBIMAGE

158 z/OS V2R13.0 DFSMSdfp Utilities

starting-line
specifies the starting line number, and is expressed as a decimal integer
from 1 to 132. The starting-line value is required.

lines
specifies the number of lines that are to contain the modification segment’s
text, and is expressed as a decimal integer from 1 to 132. When lines is not
specified, the default is 1 line.

The sum of starting-line and lines cannot exceed 133. If the sum exceeds the
number of lines specified for the form size (in the FCB statement), the
modifying text is not printed on lines past the end of the form.

POS=position
specifies the starting print position (the number of character positions from the
left margin) of the modifying text.

position
specifies the starting print position and is expressed as an integer from 1 to
204. See the restriction noted for the TEXT parameter below.

The maximum number of characters that can fit in a print line depends on the
pitch of each character and the width of the form.

For the maximum number of characters that can fit in a print line for each form
width, see IBM 3800 Printing Subsystem Programmer’s Guide.

TEXT=(([d]t,'text') [,([d]t,'text')][,...])
specifies the modifying text. The text is positioned on the form based on the
LINES and POS parameters and replaces the output data set’s text in those
positions.

d specifies a duplication factor (that is, the number of times the text is to be
repeated). The d is expressed as a decimal integer from 1 to 204. If d is not
specified, the default is 1.

t specifies the form in which the text is entered: C for character, or X for
hexadecimal. The t is required.

text
specifies the text and is enclosed in single quotation marks.

If the text type is C, you can specify any valid character. Blanks are valid
characters. A single quotation mark is coded as two single quotation marks.
You are not allowed to specify a character that results in a X'FF'. If the text
type is X, the text is coded in increments of two characters that specify
values between X'00' and X'FE'. You are not allowed to specify X'FF'.

The sum of the starting print position (see the POS parameter) and the total
number of text characters cannot exceed 205. If the width of the form is less
than the amount of space required for the text (based on character pitch,
starting position, and number of characters), characters are not printed past the
right margin of the form.

If a text character specifies a character whose translation table entry contains
X'FF', the printer sets the Data Check error indicator when the copy
modification module is loaded. This error indicator can be blocked.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 159

TABLE Statement
The TABLE statement is used to build a character arrangement table module. When
a character arrangement table is built by IEBIMAGE and an INCLUDE statement is
specified, the contents of the copied character arrangement table are used as a
basis for the new character arrangement table. If an INCLUDE statement is not
specified, each translation table entry in the new character arrangement table
module is initialized to X'FF', the graphic character modification module name fields
are set with blanks (X'40'), and the first character set identifier is set to X'83' (which
is the Gothic 10-pitch set). The remaining identifiers are set to X'00'.

After the character arrangement table is initialized, IEBIMAGE modifies the table
with data specified in the TABLE statement: character set identifiers, names of
graphic character modification modules, and specified translation table entries. The
character arrangement table, when built, must contain a reference to at least one
printable character. Only one TABLE statement can be specified for each operation
group. The TABLE statement can be preceded by an INCLUDE statement and an
OPTION statement and must always be followed by a NAME statement.

A TABLE statement with no operands specified, followed by a NAME statement that
identifies a character arrangement table module in the library, causes the module to
be formatted and printed. The TABLE statement should be preceded by an OPTION
statement with the DEVICE=3800M3 parameter for a 3800 Model 3. The format of
the printed character arrangement table module is shown under “TABLE Module
Listing” on page 144.

The syntax of the TABLE statement is:

[label] TABLE [CGMID=(set0[, set1][,...])]

[,GCMLIST={(gcm1[, gcm2][,...])|DELETE}]
[,LOC=((xloc[, {cloc[,setno]| FF}])[,...])]

where:

CGMID=(set0[,set1][,...])
identifies the character sets that are to be used with the character arrangement
table. (The IBM-supplied character sets and their identifiers are described in
IBM 3800 Printing Subsystem Programmer’s Guide .) When CGMID is
specified, all character set identifiers are changed. If only one character set is
specified, the other three identifiers are set to X'00'.

setx
is a 1-byte identifier of a character set. Up to four character set identifiers
can be specified; set0 identifies the character set that is to be loaded into
the first writable character generation module (WCGM); set1 is loaded into
the second WCGM; and so forth. You should ensure that the character set
identifiers are specified in the proper sequence, so that they are
coordinated with the translation table entries.

GCMLIST={(gcm1[, gcm2][,...])|DELETE}
names up to four graphic character modification modules to be associated with
the character arrangement table. When GCMLIST is specified, all graphic
character modification module name fields are changed (if only one module
name is specified, the other three name fields are set to blanks).

gcmx
is the 1- to 4-character name of the graphic character modification module.

IEBIMAGE

160 z/OS V2R13.0 DFSMSdfp Utilities

Up to four module names can be specified. The name is put into the
character arrangement table, whether a graphic character modification
module currently exists with that name. However, if the module does not
exist, IEBIMAGE issues a warning message to you. The character
arrangement table should not be used unless all graphic character
modification modules it refers to are stored in an image library.

DELETE
specifies that all graphic character modification module name fields are to
be set to blanks.

LOC=((xloc[, {cloc[,setno]| FF}])[,...])
specifies values for some or all of the 256 translation table entries. Each
translation table entry identifies one of 64 character positions within one of the
WCGMs.

xloc
is an index into the translation table, and is specified as a hexadecimal
value from X'00' to X'FF'; xloc identifies a translation table entry, not the
contents of the entry.

cloc
identifies one of the 64 character positions within a WCGM, and is specified
as a hexadecimal value between X'00' and X'3F'. When cloc is not
specified, the default is X'FF', an incorrect character.

setno
identifies one of the WCGMs, and is specified as a decimal integer from 0
to 3. When setno is not specified, the default is 0. The setno cannot be
specified unless cloc is also specified.

Cloc and setno specify the contents of the translation table entry located by
xloc. You can specify the same cloc and setno values for more than one xloc.

GRAPHIC Statement
The GRAPHIC statement specifies the contents of one or more of the character
segments of a graphic character modification module. A graphic character
modification module consists of header information followed by from 1 to 64
character segments. Each character segment contains

v The character’s 8-bit data code, its scan pattern, and its pitch (for the 3800
Model 1)

v Six bytes of descriptive information and the 120-byte scan pattern (for the 3800
Model 3)

By using the INCLUDE statement, you can copy an entire module, minus any
segments deleted using the DELSEG keyword. In addition, you can select character
segments from any module named with the GCM keyword on the GRAPHIC
statement. The GRAPHIC statement can also specify the scan pattern and
characteristics for a new character.

The GRAPHIC statement must always be followed by a NAME statement, another
GRAPHIC statement, or one or more data statements. The OPTION statement with
the DEVICE parameter must precede the GRAPHIC statement to create a graphic
character modification module in the 3800 Model 3 compatibility mode module
format. The GRAPHIC statement can be preceded by an INCLUDE statement.
More than one GRAPHIC statement can be coded in the operation group. The
operation group can include GRAPHIC statements that select characters from

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 161

existing modules and GRAPHIC statements that create new characters. The
GRAPHIC statement, preceded by an INCLUDE statement, can be used to delete
one or more segments from the copy of an existing module to create a new
module.

A GRAPHIC statement with no operands specified, followed by a NAME statement
that identifies a graphic character modification module, is used to format and print
the module. When you specify a graphic character modification module to be
printed for a 3800 Model 3, you must specify the OPTION statement with the
DEVICE parameter to ensure that the system assigns the correct prefix (GRF2) to
the graphic character modification module name.

The syntax of the GRAPHIC statement, when it is used to select a character
segment from another graphic character modification module, is:

[label] GRAPHIC [REF=((segno[,xloc])[,(segno[,xloc])][,...])
[,GCM=name]]

where:

REF=((segno[,xloc]) [,(segno[,xloc])] [,...])
identifies one or more character segments within an existing graphic character
modification module. Each character segment contains the scan pattern for a
character and the 6 bytes of descriptive information (used to locate its translate
table entry). The 6 bytes of descriptive information can be respecified with the
xloc subparameter. The REF parameter cannot be used to change a character’s
pitch or scan pattern.

segno
is the segment number, a decimal integer between 1 and 999. When a
character segment is copied from the IBM-supplied World Trade National
Use Graphics graphic character modification module, segno can be greater
than 64. When the character segment is copied from a graphic character
modification module built with the IEBIMAGE program, segno is a number
from 1 to 64.

xloc
specifies an 8-bit data code for the character, and can be any value
between X'00' and X'FF'. You should ensure that xloc identifies a translate
table entry that points to a character position in the WCGM (that is, the
translate table entry does not contain X'FF'). If xloc is not specified, the
character’s 8-bit data code remains unchanged when the segment is
copied.

The REF parameter can be coded in a GRAPHIC statement that includes the
ASSIGN parameter.

GCM=name
can be coded when the REF parameter is coded and identifies the graphic
character modification module that contains the character segments referred to
by the REF parameter.

name
specifies the 1- to 4-character user-specified name of the graphic character
modification module.

If GCM is coded, REF must also be coded.

IEBIMAGE

162 z/OS V2R13.0 DFSMSdfp Utilities

When GCM is not coded, the segments are copied from the IBM-supplied World
Trade National Use Graphics graphic character modification module.

The syntax of the GRAPHIC statement, when it is used to specify the scan pattern
and characteristics of a newly-created character, is:

[label] GRAPHIC ASSIGN=(xloc[,pitch])
data statements SEQ=nn

where:

ASSIGN=(xloc[,pitch])
identifies a newly-created character and its characteristics. The ASSIGN
parameter specifies the new character’s 8-bit data code and its pitch. When
IEBIMAGE detects the ASSIGN parameter, it assumes that all following
statements, until a statement without the characters SEQ= in columns 25
through 28 is encountered, are data statements that specify the character’s
scan pattern.

xloc
specifies the character’s 8-bit data code, and can be any value between
X'00' and X'FF'. You should ensure that xloc identifies a translation table
entry that points to a character position in a WCGM (that is, the translation
table entry does not contain X'FF'). The xloc is required when ASSIGN is
coded.

pitch
specifies the character’s horizontal size and is one of the decimal numbers
10, 12, or 15. If pitch is not specified, the default is 10.

At least one data statement must follow a GRAPHIC statement containing the
ASSIGN parameter.

data statements
describe the design of the character as it is represented on a character design
form. For details of how to design a character and how to use the character
design form, see IBM 3800 Printing Subsystem Programmer’s Guide.

Each data statement represents a line on the design form. Each nonblank line
on the design form must be represented with a data statement; a blank line can
also be represented with a data statement. You can code up to 24 (for 3800
Model 1) or 40 (for 3800 Model 3) data statements to describe the new
character’s pattern.

On each statement, columns 1 through 18 (for Model 1) or 24 (for Model 3) can
contain nonblank grid positions when the character is 10-pitch. Any nonblank
character can be punched in each column that represents a nonblank grid
position. Columns 1 through 15 (for Model 1) or 20 (for Model 3) can contain
nonblank grid positions when the character is 12-pitch. Columns 1 through 15
(for Model 1) or 1 through 16 (for Model 3) can contain nonblank grid positions
when the character is 15-pitch.

SEQ=nn
specifies the sequence number that must appear in columns 25 through 30 of
the data statement and identifies the line as a data statement; nn specifies a
line number (corresponding to a line on the character design form) and is a
2-digit decimal number from 01 to 40.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 163

CHARSET Statement
The CHARSET statement specifies the contents of one or more of the character
segments of a library character set module. A library character set module consists
of header information followed by 64 character segments. Each character segment
contains the character’s 6-bit code for a WCGM location, its scan pattern, and its
pitch. You can use the INCLUDE statement to copy an entire module, minus any
segments deleted using the DELSEG keyword. In addition, you can use the
CHARSET statement to select character segments from any module named with a
library character set ID or the GCM keyword. The CHARSET statement can also
specify the scan pattern and characteristics for a new character.

The CHARSET statement must always be followed by a NAME statement, another
CHARSET statement, or one or more data statements. The CHARSET statement
must be preceded by an OPTION statement with the DEVICE parameter if you
want to create library character set modules in the 3800 Model 3 compatibility mode
module format. The CHARSET statement can be preceded by an INCLUDE
statement. More than one CHARSET statement can be coded in the operation
group. The operation group can include CHARSET statements that select
characters from existing modules and CHARSET statements that create new
characters. The CHARSET statement, preceded by an INCLUDE statement, can be
used to delete one or more segments from the copy of an existing module to create
a new module.

A CHARSET statement with no operands specified, followed by a NAME statement
that identifies a library character set module, is used to format and print the module.

The syntax of the CHARSET statement, when it is used to select a character
segment from another module, is:

[label] CHARSET [REF=((segno,cloc) [,(segno,cloc)][,...])
[,{GCM=name|ID=xx}]]

where:

REF=((segno,cloc) [,(segno,cloc)][,...])
identifies one or more character segments within an existing graphic character
modification module or library character set module. If the reference is to a
GCM, the scan pattern and pitch of the character referred to are used, and a
6-bit WCGM location code is assigned. If the reference is to a character in a
library character set, the entire segment, including the 6-bit WCGM location
code, is used, unless the cloc subparameter is specified for that segment. The
REF parameter cannot be used to change a character’s pitch or scan pattern.

segno
is the segment number, a decimal integer between 1 and 999. When a
character segment is copied from the IBM-supplied World Trade National
Use Graphics graphic character modification module, segno can be greater
than 64. When the character segment is copied from a graphic character
modification or library character set module built with the IEBIMAGE
program, segno is a number from 1 to 64.

cloc
specifies a 6-bit code that points to a WCGM location, and can be any
value between X'00' and X'3F'. When a library character set segment is
referred to, if cloc is not specified, the character’s 6-bit code remains

IEBIMAGE

164 z/OS V2R13.0 DFSMSdfp Utilities

unchanged when the segment is copied. If a graphic character modification
segment is referred to, cloc must be specified.

The REF parameter can be coded in a CHARSET statement that includes the
ASSIGN parameter.

GCM=name
can be coded when the REF parameter is coded and identifies the graphic
character modification module that contains the character segments referred to
by the REF parameter.

name
specifies the 1- to 4-character user-specified name of the graphic character
modification module.

If GCM is coded, REF must also be coded. GCM should not be coded with ID.

When neither GCM nor ID is coded, the segments are copied from the
IBM-supplied World Trade National Use Graphics graphic character modification
module.

ID=xx
can be coded when the REF parameter is coded and identifies a library
character set that contains the character segments referred to by the REF
parameter.

xx specifies the 2-hexadecimal-digit ID of the library character set module. The
second digit must be odd, and '7F' and 'FF' are not allowed.

ID should not be coded with GCM.

When neither ID nor GCM has been coded, the segments are copied from the
IBM-supplied World Trade National Use Graphics graphic character modification
module.

The syntax of the CHARSET statement, when it is used to specify the scan pattern
and characteristics of a newly-created character, is:

[label] CHARSET ASSIGN=(cloc[,pitch])
data statements SEQ=nn

where:

ASSIGN=(cloc[,pitch])
identifies a newly-created character and its characteristics. The ASSIGN
parameter specifies the new character’s 6-bit code and its pitch. When
IEBIMAGE detects the ASSIGN parameter, the program assumes that all
following statements, until a statement without the characters SEQ= in columns
25 through 28 is encountered, are data statements that specify the character’s
scan pattern.

cloc
specifies the character’s 6-bit code for a WCGM location and can be any
value between X'00' and X'3F'. Cloc is required when ASSIGN is coded.

pitch
specifies the character’s horizontal size and is one of the following decimal
numbers: 10, 12, or 15. If pitch is not specified, the default is 10.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 165

At least one data statement must follow a CHARSET statement containing the
ASSIGN parameter.

data statements
describe the design of the character as it is represented on a character design
form. For details of how to design a character and how to use the character
design form, see IBM 3800 Printing Subsystem Programmer’s Guide.

Each data statement represents a line on the design form. Each nonblank line
on the design form must be represented with a data statement; a blank line can
also be represented with a data statement. You can code up to 24 (for 3800
Model 1) or 40 (for 3800 Model 3) data statements to describe the new
character’s pattern.

On each statement, columns 1 through 18 (for Model 1) or 24 (for Model 3) can
contain nonblank grid positions when the character is 10-pitch. Any nonblank
character can be punched in each column that represents a nonblank grid
position. Columns 1 through 15 (for Model 1) or 20 (for Model 3) can contain
nonblank grid positions when the character is 12-pitch. Columns 1 through 15
(for Model 1) or 1 through 16 (for Model 3) can contain nonblank grid positions
when the character is 15-pitch.

SEQ=nn
specifies the sequence number that must appear in columns 25 through 30 of
the data statement and identifies the line as a data statement; nn specifies a
line number (corresponding to a line on the character design form) and is a
2-digit decimal number from 01 to 40.

INCLUDE Statement
When an IEBIMAGE operation group is used to create a new module, the
INCLUDE statement can identify an existing image library module to be copied and
used as a basis for the new module. When the operation group is used to update
an image library module, the INCLUDE statement identifies the module to be
referred to and must be specified.

v When the INCLUDE statement is coded in an operation group, it must precede
any FCB, COPYMOD, TABLE, GRAPHIC, or CHARSET statements.

v Only one INCLUDE statement should be coded for each operation group. If more
than one is coded, only the last is used; the others are ignored.

v You can code an INCLUDE statement for an FCB module only if the
DEVICE=4248 parameter is specified on the OPTION statement. Either 3211
format or 4248 format FCBs may be included. IEBIMAGE tries to locate the 4248
format FCB first; if it is not found, IEBIMAGE looks for the 3211 format.

v You cannot copy a 3800 FCB module with INCLUDE.

The syntax of the INCLUDE statement is:

[label] INCLUDE module name

[,DELSEG=(segno[, segno][,...])]

where:

module name
names or identifies a library module. The module name is 1 to 4 alphanumeric
and national ($, #, and @) characters, in any order, or, for a library character
set module, a 2-character ID that represents two hexadecimal digits (0-9, A-F),
the second digit being odd. Note that 7F and FF cannot be used.

IEBIMAGE

166 z/OS V2R13.0 DFSMSdfp Utilities

For a 3800 INCLUDE operation, the named module must be the same type as
the module being created.

However, for the 4248 printer, if the named FCB module is not found to exist
with the prefix FCB4, an existing 3211 FCB module (prefix FCB2) with the same
module name will be used. In this case, the values specified for the LINES,
SIZE, CHx, and LPI parameters on the FCB statement will default to the values
previously specified in the included module if the new values are not compatible
with the 3211 printer. If the 3211 module was a default image, the 4248 module
will also be a default image unless the DEFAULT parameter is specified as NO.

DELSEG=(segno[,segno][,...])
specifies the segments of the copied module that are to be deleted when the
module is copied. Segment numbers can be specified in any order. In this
parameter, segment 1 is used to refer to the first segment of the module. When
you code the DELSEG parameter, you should use a current listing of the
module’s contents to ensure that you are correctly identifying the unwanted
segments.

You can code the DELSEG parameter only when the named module is a copy
modification module, a graphic character modification module, or a library
character set module.

NAME Statement
The NAME statement can name a new library module to be built by the IEBIMAGE
program. The NAME statement can also specify the name of an existing library
module. The NAME statement is required, and must be the last statement in each
operation group.

The syntax of the NAME statement is:

[label] NAME module name[(R)]

where:

module name
names or identifies a library module. The module name is 1 to 4 alphanumeric
and national ($, #, and @) characters, in any order, or, for a library character
set module, a 2-character ID that represents two hexadecimal digits (0-9, A-F),
the second digit being odd. Note that 7F and FF cannot be used.

If you are creating a 4248 FCB module, the name you specify will be prefixed
with FCB4, even if you used a 3211 FCB module (prefix FCB2) as input on an
INCLUDE statement. You cannot create or replace FCB2 modules with
IEBIMAGE.

(R)
indicates that this module is to be replaced by a new module with the same
name, if it exists. R must be coded in parentheses.

OPTION Statement
To create library character set modules and graphic character modification modules
in a form usable on the 3800 Model 3, the OPTION statement with the
DEVICE=3800M3 parameter is required. The OPTION statement with the
DEVICE=3800M3 parameter is optional when creating copy modification modules
and character arrangement table modules.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 167

To create a forms control buffer module for the 3262 Model 5 or 4248 printer, the
OPTION statement with the DEVICE=4248 parameter is required. DEVICE=4248
cannot be used to create any module other than an FCB.

The OPTION statement with the OVERRUN parameter is used only in a
COPYMOD operation group and can be placed before or after any INCLUDE
statement for the group. The value in the OVERRUN parameter specifies the
greatest line density for which you want the overrun warning message IEBA33I to
be printed. See “Using OVERRUN” on page 169 for information about overrun
conditions and suppression of overrun warning messages.

An effective use of the OPTION statement with the OVERRUN parameter would be
to determine the greatest print-line density (6, 8, 10, 12) at which the copy
modification module will be used, then specify that density in the OVERRUN
parameter to eliminate the warning messages for higher line densities.

The OPTION statement applies only to the operation group that follows it. If used,
the OPTION statement must be specified for each operation group in the job input
stream.

The syntax of the OPTION statement is:

[label] OPTION [DEVICE={3800M3|4248}]
[,OVERRUN={0|6|8|10|12}]

where:

DEVICE={3800M3|4248}
specifies printer compatibility mode module formats and processing
considerations.

3800M3
specifies 3800 Model 3 compatibility.

4248
specifies that the module created or modified with the FCB statement
should be formatted for the 3262 Model 5 or 4248 printer. See Figure 26 on
page 138 for the syntax of the 4248 FCB module.

If the DEVICE parameter is omitted, modules are created for the 3800 Model 1.

OVERRUN={0|6|8|10|12}
specifies the greatest number of lines per inch for which message IEBA33I is to
be printed for a COPYMOD operation. For example, OVERRUN=8 allows the
message for 6 and 8 lines per inch, but suppresses it for 10 and 12 lines per
inch. Specifying OVERRUN=0 suppresses message IEBA33I for every case. If
you specify OVERRUN=12, none will be suppressed.

OVERRUN=10 is valid only for the 3800 Model 3.

If the OPTION statement is omitted, the OVERRUN parameter default value is
12, and messages are not suppressed. If the OVERRUN parameter is omitted,
the default value is also 12.

If the parameter specification is incorrect (for instance, if OVERRUN=16 is
specified), the entire operation group does not complete successfully.

For details of using the OVERRUN parameter with COPYMOD, see “Using
OVERRUN” on page 169.

IEBIMAGE

168 z/OS V2R13.0 DFSMSdfp Utilities

Using OVERRUN
Table 28 shows the listing of segments of a copy modification module where an
overrun warning was in order. Even if the OPTION statement specifies
OVERRUN=0 and the overrun warning message is not printed, a note is printed to
the left of each segment description for which an overrun is possible.

Factors used in determining a line overrun condition are:
v Number of modifications per line
v Number of segments per module

Combining COPYMOD segments reduces the possibility of a line overrun condition.

For the algorithm for calculating when a copy modification module may cause a line
overrun condition, see Reference Manual for the IBM 3800 Printing Subsystem
Model 1.

Table 28. IEBIMAGE Listing of a Copy Modification Module with Overrun Notes

Notes Segment

Initial
Copy
Number

Number of
Copies

Initial Line
Number

Number of
Lines

Initial Print
Position

Number of
Characters

Note(0)1 1 1 200 10 96 10 180

Note(1)2 2 2 200 10 96 11 180

Note(1)2 3 3 200 10 96 12 180

Note(2)3 4 4 200 10 96 10 180

Note(2)3 5 5 200 10 96 11 180

Note(3)4 6 6 200 10 96 12 180

Note(3)4 7 7 200 10 96 10 180

Note(3)4 8 8 200 10 96 11 180

Note(3)4 9 9 200 10 96 12 180

Notes:

1. Indicates that you may have a copy modification overrun if you are printing at 12 LPI.

2. Indicates that you may have a copy modification overrun if you are printing at 8 LPI.

3. Indicates that you may have a copy modification overrun if you are printing at 8 or 12 LPI.

4. Indicates that you may have a copy modification overrun if you are printing at 6, 8, or 12 LPI; in other words, you
may have an overrun at any LPI.

IEBIMAGE Examples
The following examples illustrate some of the uses of IEBIMAGE. Table 29 can be
used as a quick-reference guide to the examples that follow.

Usually, examples for the IBM 3800 Model 3 can be changed to IBM 3800 Model 1
examples by deleting the OPTION DEVICE=3800M3 statement and specifying the
OVERRUN parameter equal to a number other than 10.

Table 29. IEBIMAGE Example Directory

Module Created Printer Comments Example

CHARSET 3800 Model 1 Entire library character set with scan patterns printed. 19

CHARSET 3800 Model 3 Segments copied from IBM-supplied GRAPHIC module. 20

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 169

Table 29. IEBIMAGE Example Directory (continued)

Module Created Printer Comments Example

CHARSET 3800 Model 3 New module contains a user-designed character. Existing
character arrangement (TABLE) modified to include new
character.

21

CHARSET 3800 Model 1 Segments copied from existing module. User-designed character
created.

22

COPYMOD 3800 Model 1 4 modification segments. 8

COPYMOD 3800 Model 3 Existing module used as basis for new module. OVERRUN
specified.

9

FCB 3800 Model 1 11-inch form 1

FCB 3800 Model 1 5-1/2 inch form, replaces existing SYS1.IMAGELIB member.
Multiple channel codes specified.

2

FCB 3800 Model 1 3-1/2 inch form, replaces existing SYS1.IMAGELIB member.
Varied vertical spacing.

3

FCB 3800 Model 1 7-inch form, varied vertical spacing. 4

FCB 3800 Model 1 12-inch ISO form. Replaces IBM-supplied module. 5

FCB 3800 Model 3 7-1/2 inch ISO form. Varied vertical spacing. 6

FCB 4248 11-inch form, based on existing module. New print speed and
copy position specified.

7

GRAPHIC 3800 Model 1 Entire IBM-supplied module printed. 14

GRAPHIC 3800 Model 3 Segments copied from IBM-supplied module. 15

GRAPHIC 3800 Model 3 New module contains a user-designed character. Existing
character arrangement (TABLE) modified to include new
character.

16

GRAPHIC 3800 Model 1 Segments copied from existing module. User-designed character
created.

17

GRAPHIC 3800 Model 3 New GRAPHIC module contains a user-designed character.
Existing character arrangement (TABLE) modified to include new
character. COPYMOD created to print new character. Result
tested.

18

TABLE 3800 Model 3 IBM-supplied module modified to include another character. 10

TABLE 3800 Model 3 Existing module used as basis for new module. Pitch changed. 11

TABLE 3800 Model 1 Existing module used as basis for new module. Includes
user-designed characters of GRAPHIC module.

12

TABLE 3800 Model 3 Existing module used as basis for new module. New module
deletes all GRAPHIC references and resets translation table
entries.

13

IEBIMAGE

170 z/OS V2R13.0 DFSMSdfp Utilities

Example 1: Build a New 3800 Forms Control Buffer Module

3800 Model 1
In this example, the vertical spacing and channel codes for an 11-inch form are
specified, and the module is added to the SYS1.IMAGELIB data set as a new
member.

//FCBMOD1 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

FCB CH1=1,CH12=80,LPI=8
NAME IJ

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v CH1=1 specifies channel 1 code for line 1, allowing for positioning at line 1.

v CH12=80 specifies channel 12 code for line 80, allowing for positioning at line 80
and a unit exception indication at line 80 (the last printable line on the page.)

v LPI=8 specifies that the entire form is to be at a vertical spacing of 8 lines per
inch. Because the SIZE parameter is omitted, the form length defaults to 11
inches. Because there are 10 inches of printable space in an 11-inch form, 80
lines are printed at 8 lines per inch.

v The name of the new FCB module is IJ; it is stored as a member of the
SYS1.IMAGELIB data set.

Example 2: Replace a 3800 Forms Control Buffer Module

3800 Model 1
In this example, the size and channel codes for a 5-1/2 inch form are specified, and
the module is added to the SYS1.IMAGELIB data set as a replacement for an
existing member. The new module is added to the end of the data set; the name in
the data set’s directory is updated so that it points to the new module; the old
module can no longer be accessed through the data set’s directory.

//FCBMOD2 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

FCB CH1=(1,7,13,20),CH12=26,SIZE=55
NAME S55(R)

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v CH1=(1,7,13,20) specifies channel 1 code for printable line 1, line 7, line 13, and
line 20.

v CH12=26 specifies channel 12 code for printable line 26.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 171

v SIZE=55 specifies the length of the form as 55 tenths of an inch, or 5-1/2 inches.

v Because the LPI parameter is omitted, the vertical spacing defaults to 6 lines per
inch. Because there are 4-1/2 inches of printable lines in a 5-1/2 inch form, there
are 27 print lines on this form.

v The name of the FCB module is S55, and it replaces an existing FCB module of
the same name. The new FCB module is stored as a member of the
SYS1.IMAGELIB data set.

Example 3: Replace a 3800 Forms Control Buffer Module

3800 Model 1
In this example, the vertical spacing, channel codes, and size for a form are
specified, and the module is added to the SYS1.IMAGELIB data set as a
replacement for an existing member. The new module is added to the end of the
data set; the name in the data set’s directory is updated so that it points to the new
module; the old module can no longer be accessed through the data set’s directory.

//FCBMOD3 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

FCB CH1=1,CH2=4,CH5=11,SIZE=35,LPI=((6,2),(8,3),(6,4),(8,9))
NAME HL(R)

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v CH1=1 specifies channel 1 code for printable line 1.

v CH2=4 specifies channel 2 code for line 4.

v CH5=11 specifies channel 5 code for line 11.

v LPI=((6,2),(8,3),(6,4),(8,9)) specifies vertical spacing for the first 18 printable lines
in the form:

(6,2) specifies lines 1 through 2 are at a vertical spacing of 6 lines per inch,
and take up 2/6 inch.
(8,3) specifies lines 3 through 5 are at a vertical spacing of 8 lines per inch,
and take up 3/8 inch.
(6,4) specifies lines 6 through 9 are at a vertical spacing of 6 lines per inch,
and take up 4/6 inch.
(8,9) specifies lines 10 through 18 are at a vertical spacing of 8 lines per inch,
and take up 1-1/8 inch.

v SIZE=35 specifies the length of the form as 35 tenths of an inch, or 3-1/2 inches.
Because there are 2-1/2 inches of printable space on a 3-1/2 inch form, and
because the LPI parameter specifies vertical spacing for 2-1/2 inches of lines, the
vertical spacing of all lines in the form is accounted for.

v The name of the FCB module is HL; it replaces an existing module of the same
name. The new FCB module is stored as a member of the SYS1.IMAGELIB data
set.

Example 4: Build a New 3800 Forms Control Buffer Module

3800 Model 1
In this example, the vertical spacing, channel codes, and length of a form are
specified, and the module is added to the SYS1.IMAGELIB data set as a new
member.

IEBIMAGE

172 z/OS V2R13.0 DFSMSdfp Utilities

//FCBMOD4 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

FCB CH1=1,CH6=33,SIZE=70,LPI=((8,32),(12,2))
NAME TGT

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v CH1=1 specifies channel 1 code for printable line 1.

v CH6=33 specifies channel 6 code for line 33.

v LPI=((8,32),(12,2)) specifies that the first 32 printable lines of the form are to be
at a vertical spacing of 8 lines per inch, and the next 2 printable lines are to be at
a vertical spacing of 12 lines per inch.

v SIZE=70 specifies that the length of the form is 70 tenths of an inch, or 7 inches.
Because there are 6 inches of printable lines in a 7-inch form and the LPI
parameter specifies 32 lines at 8 lines per inch, or 4 inches, and 2 lines at 12
lines per inch, or 1/6 inch, the vertical spacing for the remaining 1-5/6 inches
defaults to 6 lines per inch.

Therefore, the form consists of lines 1 through 32 at 8 lines per inch, lines 33
through 34 at 12 lines per inch, and lines 35 through 45 at 6 lines per inch, with
channel codes at line 1 and line 33.

v The name of the new FCB module is TGT; it is stored as a member of the
SYS1.IMAGELIB data set.

Example 5: Replace the 3800 Forms Control Buffer Module STD3

3800 Model 1
In this example, an FCB module is defined that uses ISO paper sizes, replacing the
IBM-supplied module named STD3. This must be done before the dump-formatting
routines that print high-density dumps can print them at 8 lines per inch on that
printer.

//FCBMOD5 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

FCB CH1=1,CH12=88,LPI=(8,88),SIZE=120
NAME STD3(R)

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v CH1=1 specifies channel 1 code for printable line 1; CH12=88 specifies channel
12 code for line 88.

v LPI=(8,88) specifies that all 88 printable lines of the form are to be at a vertical
spacing of 8 lines per inch.

v SIZE=120 specifies that the length of the form is 120 tenths of an inch, or 12
inches, which is the longest ISO paper size.

v The name of the new FCB module is STD3; it is to replace the existing module
of that same name on SYS1.IMAGELIB.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 173

Example 6: Build a New 3800 Forms Control Buffer Module for
Additional ISO Paper Sizes

3800 Model 3
In this example, an FCB module is defined that uses ISO paper sizes and has the
ISO Paper Sizes Additional Feature installed.

//FCBMOD JOB ... 72
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

FCB CH1=1,CH12=75,SIZE=85,
LPI=((10,35),(12,4),(10,35),(6,1) X

NAME ARU
/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v CH1=1 specifies channel 1 code for line 1, allowing for positioning at line 1.

v Ch12=75 specifies channel 12 code for line 75, allowing for positioning at line 75
and a unit exception indication at 75 (the last printable line on the page.)

v LPI=((10,35),(12,4),(10,35),(6,1)) specifies vertical spacing for the entire printable
area on the form. The last printable line on the form must have vertical spacing
of 6 lines per inch. The sum of the lines allocated must be a multiple of 1/2.
EXAMPLE

(10,35)=3 1/2" (12,4)=2/6" (6,1)=1/6"

and 3 1/2 + 2/6 + 3 1/2 + 1/6 = 7 1/2 which is a multiple of 1/2

v SIZE=85 specifies the length of the form as 85 tenths of an inch, or 8-1/2 inches,
although the printable area is 7-1/2 inches.

v The name of the new FCB module is ARU; it is stored as a member of the
SYS1.IMAGELIB data set.

Example 7: Build a 4248 Forms Control Buffer Module
In this example, a new 4248 default FCB module is built using an existing FCB
module as a model. The new module, NEW1, is added to SYS1.IMAGELIB as a
new member. The existing module, OLD1, remains unchanged. OLD1 may be a
4248 FCB called FCB4OLD1, or it may be a 3211 FCB called FCB2OLD1. (If both
modules existed, FCB4OLD1 would be used.)

//FCBMOD7 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

OPTION DEVICE=4248
INCLUDE OLD1
FCB COPYP=67,PSPEED=M,DEFAULT=YES
NAME NEW1

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

IEBIMAGE

174 z/OS V2R13.0 DFSMSdfp Utilities

v DEVICE=4248 on the OPTION statement specifies that this module is to be
created for the 4248 printer.

v The INCLUDE statement specifies that a copy of the existing module OLD1 is to
be used as a basis for the new module, NEW1.

v COPYP=67 indicates that the horizontal copy feature should be activated, and
that horizontal copies should begin printing in the 67th print position from the left
margin. This setting overrides any COPYP value previously set in module OLD1;
it applies to module NEW1, but does not change the value set in OLD1.

Note that the value 67 divides a 132-hammer printer into two equal copy areas
for two equally-sized horizontal copies. With COPYP=67, a maximum of 66 bytes
can be sent to the printer.

v PSPEED=M indicates that the printer speed should be set to medium (3000
LPM). This setting overrides any PSPEED value previously set in module OLD1;
it applies to module NEW1, but does not change the value set in OLD1.

v DEFAULT=YES indicates that this module, NEW1, should become a default FCB
module for this installation.

v Because these parameters are not specified, the values of LINES, SIZE, LPI,
and CHx default to the values which already exist in module OLD1.

v The NAME statement indicates that this module should be called NEW1.

Example 8: Build a New Copy Modification Module

3800 Model 1
In this example, a copy modification module that contains four modification
segments is built. The module is added to the SYS1.IMAGELIB data set as a new
member.

72
//COPMOD1 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
COPY1 COPYMOD COPIES=(1,1),LINES=(1,1),POS=50, X

TEXT=(C,’CONTROLLER’S COPY’)
COPY2A COPYMOD COPIES=(2,1),LINES=(1,1),POS=50, X

TEXT=(C,’SHIPPING MANAGER’S COPY’)
COPY2B COPYMOD COPIES=(2,1),LINES=(34,3),POS=75, X

TEXT=(10C,’ ’)
COPYALL COPYMOD COPIES=(1,4),LINES=(58,1),POS=35, X

TEXT=((C,’***’),(C,’CONFIDENTIAL’),(3X,’5C’))
NAME RTO1

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v The COPY1 COPYMOD statement specifies text that applies to each page of the
first copy of the output data set:

LINES=(1,1) and POS=50 specify that the text is to be on the first printable line
of each page, starting at the 50th print position from the left.

The TEXT parameter identifies each page of the copy as being the “Controller’s
Copy”.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 175

v The COPY2A COPYMOD statement specifies text that applies to each page of
the second copy of the output data set. The text is to be on the first line of each
page, at the 50th print position from the left, with each page of the copy being
the “Shipping Manager’s Copy”.

v The COPY2B COPYMOD statement specifies that part of the second copy’s
output data set text is to be blanked out, so that the first, third, and subsequent
copies contain information that is not printed on the second copy. The blank area
is to be on lines 34, 35, and 36, beginning at the 75th print position from the left.
The text on lines 34, 35, and 36, between print positions 75 and 84, is to be
blank (that is, the character specified between the TEXT parameter’s single
quotation marks is a blank).

v The COPYALL COPYMOD statement specifies text that applies to the first four
copies of the output data set. This example assumes that no more than four
copies are printed each time the job that produces the output data set is
processed. The text is to be on the 58th line on each page, at the 35th print
position from the left. The legend “***CONFIDENTIAL***” is to be on each page
of the copy. Note that the text can be coded in both character and hexadecimal
format.

v The name of the copy modification module is RTO1; it is stored as a member of
the SYS1.IMAGELIB data set.

Example 9: Build a New Copy Modification Module from an Existing
Copy

3800 Model 3
In this example, a copy of an existing copy modification module, RTO1, is used as
the basis for a new copy modification module. The new module is added to the
SYS1.IMAGELIB data set as a new member. The existing module, RTO1, remains
unchanged and available for use.

72
//COPMOD2 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE RTO1,DELSEG=1
OPTION OVERRUN=8,DEVICE=3800M3
COPYMOD COPIES=(2,3),LINES=(52,6),POS=100, X

TEXT=(X,’40404040404040405C5C’)
NAME AP

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v The INCLUDE statement specifies that a copy of the copy modification module
named RTO1 is used as a basis for the new module, and that the first
modification segment of RTO1 is to be deleted from the copy.

v OVERRUN=8 in the OPTION statement specifies that the IEBIMAGE program is
to print a warning message if the copy modification could cause a line overrun
condition when printing at 6 and 8 lines per inch. The program is also to
suppress any warning messages that apply to printing at 10 and 12 lines per
inch. DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3
compatibility mode processing.

IEBIMAGE

176 z/OS V2R13.0 DFSMSdfp Utilities

v The COPYMOD statement specifies text that applies to each page of the second,
third, and fourth copies of the output data set:

LINES=(52,6) and POS=100 specify that the text is to be on the 52nd line and
repeated for the 53rd through 57th lines of each page, starting at the 100th print
position from the left.

The TEXT statement specifies the text in hexadecimal form: eight blanks followed
by two asterisks (in this example, the assumption is made that X'40' prints as a
blank and that X'5C' prints as an asterisk; in actual practice, the character
arrangement table used with the copy modification module might translate X'40'
and X'5C' to other printable characters).

v The name of the new copy modification module is AP; it is stored as a member
of the SYS1.IMAGELIB data set.

Example 10: Add a New Character to a Character Arrangement Table
Module

3800 Model 3
In this example, an IBM-supplied character arrangement table module is modified to
include another character, and then added to the SYS1.IMAGELIB data set as a
replacement for the IBM-supplied module.

//CHARMOD1 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE GF10
OPTION DEVICE=3800M3
TABLE LOC=((2A,2A),(6A,2A),(AA,2A),(EA,2A))
NAME GF10(R)

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v The INCLUDE statement specifies that a copy of the character arrangement table
named GF10 is to be used as a basis for the new module.

v The OPTION statement with the DEVICE parameter specifies 3800 Model 3
compatibility mode processing.

v The TABLE statement specifies updated information for four translation table
entries: X'2A', X'6A', X'AA', and X'EA'. (These four locations are unused in the
IBM-supplied GF10 table.) Each of the four translation table entries is to point to
the '2A' (43rd character) position in the first WCGM, which contains the scan
pattern for a lozenge.

v The name of the character arrangement table is GF10, and it is stored as a new
module in the SYS1.IMAGELIB data set. The data set’s directory is updated so
that the name GF10 points to the new module; the old GF10 module can no
longer be accessed through the data set’s directory.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 177

Example 11: Build a New Character Arrangement Table Module from an
Existing Copy

3800 Model 3
In this example, an existing character arrangement table module is copied and used
as a basis for a new module. The new character arrangement table is identical to
the old one, except that it uses the Gothic 15-pitch character set instead of Gothic
10-pitch.

//CHARMOD2 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE A11
OPTION DEVICE=3800M3
TABLE CGMID=87
NAME A115

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v The INCLUDE statement specifies that a copy of the character arrangement table
named A11 is to be used as a basis for the new module. The A11 character
arrangement table translates 8-bit data codes to printable characters in the
Gothic 10-pitch character set.

v The OPTION statement with the DEVICE parameter specifies 3800 Model 3
compatibility mode processing.

v The TABLE statement specifies a new character set identifier, X'87', which is the
identifier for the Gothic 15-pitch character set. No other changes are made to the
character arrangement table. The new table calls for characters in the Gothic
15-pitch character set.

v The name of the new character arrangement table is A115; it is stored as a
member of the SYS1.IMAGELIB data set.

Example 12: Build Graphic Characters in a Character Arrangement
Table Module

3800 Model 1
In this example, an existing character arrangement table module is copied and used
as the basis for a new module that will include user-designed characters of a
graphic character modification module. The new module is then added to the
SYS1.IMAGELIB data set.

//CHARMOD3 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE ONB
TABLE GCMLIST=ONB1,LOC=((6F,2F,1),(7C,3C,1),(6A,2A,0))
NAME ONBZ

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

IEBIMAGE

178 z/OS V2R13.0 DFSMSdfp Utilities

v The INCLUDE statement specifies that a copy of the character arrangement table
named ONB is to be used as a basis for the new module. ONB refers to two
WCGMs.

v The TABLE statement identifies a graphic character modification module and
stipulates the translation table entries for each of its segments:

GCMLIST=ONB1 identifies the graphic character modification module named
ONB1. The LOC parameter specifies the translate table entry location, character
position, and WCGM number for each segment of the module:

The first segment corresponds to the 8-bit data code X'6F'. The segments’
scan pattern is to be loaded at character position X'2F' (that is, the 48th
character position) in the second WCGM.
The second segment corresponds to the 8-bit data code X'7C'. The
segment’s scan pattern is to be loaded at character position X'3C' (that is, the
61st character position) in the second WCGM.
The third segment corresponds to the 8-bit data code X'6A'. The segment’s
scan pattern is to be loaded at character position X'2A' (that is, the 43rd
character position) in the first WCGM.
The name of the new character arrangement table is ONBZ; it is stored as a
new module in the SYS1.IMAGELIB data set.

Example 13: Delete Graphic References From a Character
Arrangement Table Module

3800 Model 3
In this example, an existing character arrangement table module is copied and used
as a basis for a new one. The new character arrangement table deletes references
to all graphic character modification modules and resets the translate table entries
that were used to point to character positions for the segments of a graphic
character modification module.

//CHARMOD4 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE ZYL
OPTION DEVICE=3800M3
TABLE GCMLIST=DELETE,LOC=((6A),(6B))
NAME ZYLA

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v The INCLUDE statement specifies that a copy of the character arrangement table
named ZYL is to be used as a basis for the new module.

v The OPTION statement with the DEVICE parameter specifies 3800 Model 3
compatibility mode processing.

v The TABLE statement deletes references to graphic character modification
modules and resets two translation table entries:

GCMLIST=DELETE specifies that all names of graphic character modification
modules included with the module when the ZYL character arrangement table
was copied are to be reset to blanks (X'40').

The LOC parameter identifies two locations in the translation table, X'6A' and
X'6B', that are to be set to X'FF' (the default value when no character position or
WCGM values are specified).

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 179

v The name of the new character arrangement table is ZYLA; it is stored as a
member of the SYS1.IMAGELIB data set.

Example 14: List the World Trade National Use Graphics Graphic
Character Modification Module

3800 Model 1
In this example, each segment of the IBM-supplied graphic character modification
module containing the World Trade National Use Graphics is printed. Each segment
is unique, although the scan patterns for some segments are identical to other
segment’s scan patterns with only the 8-bit data code being different.

//GRAFMOD1 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

GRAPHIC
NAME *

/*

The control statements are discussed below:

v DISP=SHR is coded because the library is not being updated.

v The World Trade National Use Graphics graphic character modification module is
identified with the pseudonym of “*”. The scan pattern of each of the characters
in the module is printed.

Example 15: Build a Graphic Character Modification Module from the
Character Modification Module World Trade GRAFMOD

3800 Model 3
In this example, a graphic character modification module is built. Its characters are
segments copied from the World Trade National Use Graphics graphic character
modification module. (See the IBM 3800 Printing Subsystem Programmer’s Guide
for the EBCDIC assignments for the characters.) The new module is stored in the
SYS1.IMAGELIB system data set.

//GRAFMOD2 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

OPTION DEVICE=3800M3
GRAPHIC REF=((24),(25),(26),(27),(28),(31),(33),(35),(38),(40))
NAME CSTW

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3 compatibility
mode module format.

v By not specifying the GCM keyword, the GRAPHIC statement identifies the
World Trade National Use Graphics graphic character modification module. Ten
of its segments are to be copied and used with the new module.

v The name of the graphic character modification module is CSTW; it is stored as
a new module in the SYS1.IMAGELIB data set.

IEBIMAGE

180 z/OS V2R13.0 DFSMSdfp Utilities

Example 16: Build a New Graphic Character Modification Module and
Modify a Character Arrangement Table to Use It

3800 Model 3
In this example, a graphic character modification module is built. The module
contains one user-designed character, a reverse 'E', whose 8-bit data code is
designated as X'E0' and whose pitch is 10. An existing character arrangement table
is then modified to include the reverse E.

//GRAFMOD3 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

OPTION DEVICE=3800M3
GRAPHIC ASSIGN=(E0,10)

XXXXXXXXXXXXXXX SEQ=10
XXXXXXXXXXXXXXX SEQ=11
XXXXXXXXXXXXXXX SEQ=12

XXXX SEQ=13
XXXX SEQ=14
XXXX SEQ=15
XXXX SEQ=16
XXXX SEQ=17
XXXX SEQ=18
XXXX SEQ=19

XXXXXXXXXXXXX SEQ=20
XXXXXXXXXXXXX SEQ=21
XXXXXXXXXXXXX SEQ=22

XXXX SEQ=23
XXXX SEQ=24
XXXX SEQ=25
XXXX SEQ=26
XXXX SEQ=27
XXXX SEQ=28
XXXX SEQ=29

XXXXXXXXXXXXXXX SEQ=30
XXXXXXXXXXXXXXX SEQ=31
XXXXXXXXXXXXXXX SEQ=32
NAME BODE
INCLUDE GS10
OPTION DEVICE=3800M3
TABLE CGMID=(83,FF),GCMLIST=BODE,LOC=(E0,03,1)
NAME RE10

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v DEVICE=3800M3 in the OPTION statement preceding the GRAPHIC statement
specifies 3800 Model 3 compatibility mode processing.

v The GRAPHIC statement’s ASSIGN parameter establishes the 8-bit data code,
X'E0', and the width, 10-pitch, for the user-designed character. The data
statements that follow the GRAPHIC statement describe the character’s scan
pattern.

v The name of the graphic character modification module is BODE, and it is stored
as a new module in the SYS1.IMAGELIB data set.

v The INCLUDE statement specifies that a copy of the GS10 character
arrangement table is to be used as the basis for the new table.

v The TABLE statement specifies the addition of the reverse E to that copy of the
GS10 table.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 181

CGMID=(83,FF) specifies the character set identifier X'83' for the Gothic-10 set
(which is the set already used by the GS10 table) and specifies X'FF' as a
character set identifier to allow accessing of the second WCGM without loading
it.

GCMLIST=BODE identifies the graphic character modification module containing
the reverse E for inclusion in the table.

LOC=(E0,03,1) specifies that the reverse E, which has been assigned the 8-bit
data code X'E0', is to be loaded into position X'03' in the second WCGM.
Because this second WCGM is otherwise unused, any position in it could have
been used for the reverse E.

v The new character arrangement table is named RE10; it is stored as a new
module in the SYS1.IMAGELIB data set.

Example 17: Build a Graphic Character Modification Module from
Multiple Sources

3800 Model 1
In this example, a graphic character modification module is created. Its contents
come from three different sources: nine segments are copied from an existing
module with the INCLUDE statement; the GRAPHIC statement is used to select
another segment to be copied; the GRAPHIC statement is also used to establish
characteristics for a user-designed character. The new graphic character
modification module, when built, is added to the SYS1.IMAGELIB.

//GRAFMOD4 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE CSTW,DELSEG=3
GRAPHIC REF=(1,6A),GCM=BODE,ASSIGN=9A
******** SEQ=06
********** SEQ=07
**** **** SEQ=08
*** *** SEQ=09
*** **** SEQ=10
*** ****** SEQ=11
*** ****** SEQ=12
*** **** SEQ=13
*** **** SEQ=14
*** *** SEQ=15
*** *** SEQ=16
*** **** **** SEQ=17
*** ******* SEQ=18
*** ***** SEQ=19
NAME JPCK

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v The INCLUDE statement specifies that a copy of the graphic character
modification module named CSTW is to be included with the new module. All
segments of CSTW, except the third segment (as a result of DELSEG=3), are to
be copied into the new module and become the module’s first through ninth
modification segments.

v The GRAPHIC statement specifies the module’s tenth and eleventh segments:

IEBIMAGE

182 z/OS V2R13.0 DFSMSdfp Utilities

REF=(1,6A) and GCM=BODE specify that the 10th segment of the new module
is to be obtained by copying the first segment from the graphic character
modification module named BODE. In addition, the segment’s 8-bit data code is
to be changed so that its character is identified with the code X'6A'.

ASSIGN=9A specifies that the new module’s 11th segment is a user-designed
character whose 8-bit data code is X'9A' and whose width is 10-pitch (the default
when no pitch value is specified). The GRAPHIC statement is followed by data
statements that specify the character’s scan pattern.

v The name of the graphic character modification module is JPCK, it is stored as a
new module in the SYS1.IMAGELIB data set.

Example 18: Define and Use a Character in a Graphic Character
Modification Module

3800 Model 3
In this example, a graphic character modification module containing a
user-designed character is built. Next, a format character arrangement table is
modified to include that new character. Then, a copy modification module is created
to print the new character enclosed in a box of format characters. Finally, the result
is tested to allow comparison of the output with the input.

//CHAR JOB ...
//BUILD EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

OPTION DEVICE=3800M3
STEP1 GRAPHIC ASSIGN=5C
XXX XXX SEQ=01
XXX XXX SEQ=02
XXX XXX SEQ=03
XXX XXX SEQ=04
XXXXXXXXXXXXXXXXXXXXXXX SEQ=05
XXXXXXXXXXXXXXXXXXXXXXX SEQ=06
XXXXXXXXXXXXXXXXXXXXXXX SEQ=07
XXX XXX SEQ=08
XXX XXX SEQ=09
XXX XXX SEQ=10
XXX XXX SEQ=11

SEQ=12
SEQ=13
SEQ=14

XXXXXXXXXXXXXXXXXXXXXXX SEQ=15
XXXXXXXXXXXXXXXXXXXXXXX SEQ=16
XXXXXXXXXXXXXXXXXXXXXXX SEQ=17
XXX XXX XXX SEQ=18
XXX XXX XXX SEQ=19
XXX XXX XXX SEQ=20
XXX XXX XXX SEQ=21
XXXX XXXXX XXXX SEQ=22
XXXX XXXXXXX XXXX SEQ=23
XXXXXXXXXXXXXXXXXXX SEQ=24

XXXXX XXXXXX SEQ=25
SEQ=26
SEQ=27
SEQ=28

XXXXXXXXXXXXXXXXXXXXXXX SEQ=29
XXXXXXXXXXXXXXXXXXXXXXX SEQ=30
XXXXXXXXXXXXXXXXXXXXXXX SEQ=31

XXXXXXX SEQ=32
XXXXXXXXXXXXXXXXXX SEQ=33

XXXXXXXXXXXXXXXX SEQ=34
XXXXXXXXXXXXXXXX SEQ=35

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 183

XXXXXXXXXXXXXXXXXX SEQ=36
XXXXXXX SEQ=37

XXXXXXXXXXXXXXXXXXXXXXX SEQ=38
XXXXXXXXXXXXXXXXXXXXXXX SEQ=39
XXXXXXXXXXXXXXXXXXXXXXX SEQ=40

NAME AIBM

STEP2 OPTION DEVICE=3800M3
INCLUDE FM10
TABLE GCMLIST=AIBM,LOC=(5C,2C)
NAME BIBM

STEP3 OPTION DEVICE=3800M3
COPYMOD COPIES=1,LINES=58,POS=5,TEXT=(C,’W6X’)
COPYMOD COPIES=1,LINES=59,POS=5,TEXT=(C,’7*7’)
COPYMOD COPIES=1,LINES=60,POS=5,TEXT=(X,’E9F6E8’)
NAME CIBM

/*
//TEST EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A,CHARS=(GF10,BIBM),
// MODIFY=(CIBM,1)
//SYSIN DD *

OPTION DEVICE=3800M3
GRAPHIC
NAME AIBM

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v The GRAPHIC statement’s ASSIGN parameter specifies that the 8-bit data code
for the user-designed character is X'5C' and the width is 10-pitch (the default
when no pitch is specified). The GRAPHIC statement is followed by data
statements that specify the character’s scan pattern for vertical line spacing of 6
lines per inch.

v The name of the graphic character modification module is AIBM, and it is stored
as a new module in SYS1.IMAGELIB.

v At STEP2, the INCLUDE statement specifies that a copy of the FM10 character
arrangement table is to be used as a basis for the new module.

v The TABLE statement identifies the graphic character modification module named
AIBM, created in the previous step. The TABLE statement’s LOC parameter
specifies the translation table entry location (the character’s 8-bit data code) of
X'5C' and the position (X'2C') where that character is to be loaded into the
WCGM.

v The name of the new character arrangement table, which is added to
SYS1.IMAGELIB, is BIBM.

v At STEP3, the three COPYMOD statements specify text that is to be placed on
lines 58, 59, and 60 of the first copy of the output data set, starting at print
position 5 on each line. When used with the BIBM character arrangement table,
the characters W, 6, and X print as a top left corner, horizontal line segment, and
top right corner, all in line weight 3. The characters 7, *, and 7 print as a weight-3
vertical line segment on both sides of the user-designed character built at STEP1
(the asterisk has the EBCDIC assignment 5C, which addresses that character).
The hexadecimal E9, F6, and E8 complete the line-weight-3 Format box around
the character.

v The name of the copy modification module is CIBM; it is stored as a new module
on SYS1.IMAGELIB.

IEBIMAGE

184 z/OS V2R13.0 DFSMSdfp Utilities

v At TEST, the EXEC statement calls for another execution of the IEBIMAGE
program to test the modules just created. On the SYSPRINT DD statement the
BIBM character arrangement table is the second of two specified, and the CIBM
copy modification module is specified with a table reference character of 1, to
use that BIBM table.

v The GRAPHIC statement with no operand specified calls for printing of the
module, AIBM, specified with the NAME statement that follows it. Each page of
the output listing for this IEBIMAGE run has a small image of the modification
printed in the lower left corner.

v The OPTION statement with the DEVICE parameter at STEP1, STEP2, and
STEP3 specifies 3800 Model 3 compatibility mode module format and processing
considerations.

Example 19: List a Library Character Set Module

3800 Model 1
In this example, each segment of a library character set is printed. The scan pattern
of each of the characters in the module is printed.

//LIBMOD1 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

CHARSET
NAME 83

/*

The control statements are discussed below:

v NAME specifies the name of the library character set (83).

Example 20: Build a Library Character Set Module

3800 Model 3
In this example, a library character set module is built. Its characters are segments
copied from the World Trade National Use Graphics graphic character modification
module. For the listing of all the segments of that module, see IBM 3800 Printing
Subsystem Programmer’s Guide. The EBCDIC assignments for the characters are
replaced by WCGM-location codes. The new module is stored in the
SYS1.IMAGELIB system data set.

72
//LIBMOD2 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

OPTION DEVICE=3800M3
CHARSET REF=((24,01),(25,02),(26,03),(27,04),(28,05), X

(31,06),(33,07),(35,08),(38,09),(40,0A))
NAME 73

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3 compatibility
mode module format.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 185

v By not specifying the GCM keyword or a library character set ID, the CHARSET
statement identifies the World Trade National Use Graphics graphic character
modification module. Ten of its segments are to be copied and used with the new
module. For example, the 24th segment is to be copied and assigned the WCGM
location 01. See the REF parameter (24,01).

v The name of the library character set module is 73, and it is stored as a new
module in the SYS1.IMAGELIB data set.

Example 21: Build a Library Character Set Module and Modify a
Character Arrangement Table to Use It

3800 Model 3
In this example, a library character set module is built. The module contains one
user-designed character, a reverse 'E', whose 6-bit WCGM-location code is
designated as X'03', and whose pitch is 10. An existing character arrangement table
is then modified to include the reverse E.

//LIBMOD3 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

OPTION DEVICE=3800M3
CHARSET ASSIGN=(03,10)
XXXXXXXXXXXXXXX SEQ=10
XXXXXXXXXXXXXXX SEQ=11
XXXXXXXXXXXXXXX SEQ=12

XXXX SEQ=13
XXXX SEQ=14
XXXX SEQ=15
XXXX SEQ=16
XXXX SEQ=17
XXXX SEQ=18
XXXX SEQ=19

XXXXXXXXXXXXX SEQ=20
XXXXXXXXXXXXX SEQ=21
XXXXXXXXXXXXX SEQ=22

XXXX SEQ=23
XXXX SEQ=24
XXXX SEQ=25
XXXX SEQ=26
XXXX SEQ=27
XXXX SEQ=28
XXXX SEQ=29

XXXXXXXXXXXXXXX SEQ=30
XXXXXXXXXXXXXXX SEQ=31
XXXXXXXXXXXXXXX SEQ=32
NAME 73
INCLUDE GS10
OPTION DEVICE=3800M3
TABLE CGMID=(83,73),LOC=(E0,03,1)
NAME RE10

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

v DEVICE=3800M3 in the OPTION statement specifies 3800 Model 3 compatibility
mode module format and processing considerations.

IEBIMAGE

186 z/OS V2R13.0 DFSMSdfp Utilities

v The CHARSET statement’s ASSIGN parameter establishes the 6-bit
WCGM-location code, X'03', and the width, 10-pitch, for the user-designed
character. The data statements that follow the CHARSET statement describe the
character’s scan pattern.

v The name of the library character set module is 73, and it is stored as a new
module in the SYS1.IMAGELIB data set.

v The INCLUDE statement specifies that a copy of the GS10 character
arrangement table is to be used as the basis for the new table.

v The TABLE statement specifies the addition of the library character set containing
the reverse E to that copy of the GS10 table.

CGMID=(83,73) specifies the character set identifier X'83' for the Gothic-10 set
(which is the set already used by the GS10 table) and specifies X'73' as a
character set identifier to allow loading of the second WCGM with the library
character set 73.

LOC=(E0,03,1) specifies that the reverse E, which has been assigned the
WCGM location 03 in the second WCGM, is to be referenced by the EBCDIC
code X'E0'.

v The new character arrangement table is named RE10; it is stored as a new
module in the SYS1.IMAGELIB data set.

Example 22: Build a Library Character Set Module from Multiple
Sources

3800 Model 1
In this example, a library character set module is created. Its contents come from
three different sources: 62 segments are copied from an existing module with the
INCLUDE statement; the CHARSET statement is used to select another segment to
be copied; a second CHARSET statement is used to establish characteristics for a
user-designed character. The new library character set module, when built, is added
to the SYS1.IMAGELIB.

//LIBMOD4 JOB ...
//STEP1 EXEC PGM=IEBIMAGE
//SYSUT1 DD DSNAME=SYS1.IMAGELIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

INCLUDE 33,DELSEG=(3,4)
CHARSET REF=(1,02),GCM=BODE,ASSIGN=03
******** SEQ=06
********** SEQ=07
**** **** SEQ=08
*** *** SEQ=09
*** **** SEQ=10
*** ****** SEQ=11
*** ****** SEQ=12
*** **** SEQ=13
*** **** SEQ=14
*** *** SEQ=15
*** *** SEQ=16
*** **** **** SEQ=17
*** ******* SEQ=18
*** ***** SEQ=19
NAME 53

/*

The control statements are discussed below:

v The SYSUT1 DD statement includes DISP=OLD to ensure that no other job can
modify the data set while this job is executing.

IEBIMAGE

Chapter 7. IEBIMAGE (Create Printer Image) Program 187

v The INCLUDE statement specifies that a copy of the library character set module
named 33 is to be included with the new module. All segments of 33, except the
third and fourth segments (as a result of DELSEG=3,4), are to be copied into the
new module and become the basis for the new module.

v The CHARSET statement specifies the module’s third and fourth segments:

REF=(1,02) and GCM=BODE specify that the third segment of the new module is
to be obtained by copying the first segment from the graphic character
modification module named BODE. The segment’s 6-bit WCGM-location code is
to be set so that its character is identified with the code X'02'.

ASSIGN=03 specifies that the new module’s fourth segment is a user-designed
character whose 6-bit WCGM-location code is X'03' and whose width is 10-pitch
(the default when no pitch value is specified). The CHARSET statement is
followed by data statements that specify the character’s scan pattern.

v The name of the library character set module is 53, it is stored as a new module
in the SYS1.IMAGELIB data set.

IEBIMAGE

188 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 8. IEBISAM Program

It is recommended that Indexed Sequential Access Method (ISAM) data sets be
converted to VSAM for optimal use of DFSMS. VSAM is faster than ISAM and more
reliable than VSAM. ISAM data sets cannot be SMS-managed.

You can use access method services to allocate a VSAM key-sequenced data set
and copy an ISAM data set into it. Access method services are also used to
manipulate VSAM key-sequenced data sets. See z/OS DFSMS: Using Data Sets
and the REPRO command in z/OS DFSMS Access Method Services for information
on converting ISAM data sets to VSAM key-sequenced data sets.

You can use IEBISAM to perform the following tasks:

v Copy an indexed sequential access method (ISAM) data set directly from one
DASD volume to another.

v Create a backup (transportable) copy of an ISAM data set by copying (unloading)
it into a sequential data set on a DASD or magnetic tape volume.

v Create an ISAM data set from an unloaded data set. The sequential (unloaded)
data set is in a form that can be subsequently loaded. That is, it can be
converted back into an ISAM data set.

v Print an ISAM data set.

Copying an ISAM Data Set
IEBISAM can be used to copy an indexed sequential (ISAM) data set directly from
one DASD volume to another. When the data set is copied, the records marked for
deletion are only deleted if the DELETE parameter was specified in the OPTCD
(optional control program service) field. Those records that are contained in the
overflow area of the original data set are moved into the primary area of the copied
data set. Control information characteristics such as BLKSIZE and OPTCD can be
overridden by new specifications. Caution should be used, however, when
overriding these characteristics (see “Overriding DCB Control Information” on
page 190).

Creating a Sequential Backup Copy
An unloaded sequential data set can be created to serve as a backup or
transportable copy of source data from an ISAM data set. Records marked for
deletion within the ISAM data set are automatically deleted when the unloaded data
set is created. When the data set is subsequently loaded—reconstructed into an
ISAM data set—records that were contained in the overflow area assigned to the
original data set are moved sequentially into the primary area.

An unloaded data set consists of 80-byte logical records. The data set contains:
v Records from an ISAM data set
v Control information used in the subsequent loading of the data set

Control information consists of characteristics that were assigned to the ISAM data
set. These characteristics are:
v Optional control program service (OPTCD)
v Record format (RECFM)
v Logical record length (LRECL)
v Block size (BLKSIZE)

© Copyright IBM Corp. 1979, 2002 189

v Relative key position (RKP)
v Number of tracks in master index (NTM)
v Key length (KEYLEN)
v Number of overflow tracks on each cylinder (CYLOFL)

Overriding DCB Control Information
When a load operation is specified, control information characteristics can be
overridden by specifications in the DCB parameter of the SYSUT2 DD statement
(refer to “Control” on page 193 for a discussion of the SYSUT2 DD statement).
Caution should be used, however, because checks are made to ensure that:

1. Record format is the same as that of the original indexed sequential data set
(either fixed (F) or variable (V) length).

2. Logical record length is greater than or equal to that of the original ISAM data
set when the RECFM is variable (V) or variable blocked (VB).

3. For records, the block size is equal to or a multiple of the logical record length
of the records in the original indexed sequential data set. For variable records,
the block size is equal to or greater than the logical record length plus four. The
block size cannot exceed 32760 bytes.

4. Relative key position is equal to or less than the logical record length minus the
key length. Following are relative key position considerations:

v If the RECFM is V or VB, the relative key position should be at least 4.

v If the DELETE parameter was specified in the OPTCD field and the RECFM
is F or fixed blocked (FB), the relative key position should be at least 1.

v If the DELETE parameter was specified in the OPTCD field and the RECFM
is V or VB, the relative key position should be at least 5.

5. The key length is less than or equal to 255 bytes.

6. For a fixed unblocked data set with RKP=0, the LRECL value is the length of
the data portion, not, as in all other cases, the data portion and key length.
When changing an RKP=0 data set RECFM from fixed unblocked and to fixed
blocked, the new LRECL must be equal to the old LRECL plus the old key
length.

If either RKP or KEYLEN is overridden, it may not be possible to reconstruct the
data set.

The number of 80-byte logical records in an unloaded data set can be
approximated by the following formula:

where x is the number of 80-byte logical records created, n is the number of
records in the ISAM data set, and y is the length of a fixed record or the
average length of variable records.

Figure 38 on page 191 shows the format of an unloaded data set for the first
three 100-byte records of an ISAM data set. Each logical record in the unloaded
data set contains a binary sequence number (aa) in the first 2 bytes of the
record. Each record begins with 2 bytes (bb) that indicate the number of bytes
in that record. (The last record is followed by 2 bytes containing binary zeros to
identify the last logical record in the unloaded data set.) The characteristics of
the ISAM data set are contained in the first two logical records of the unloaded
data set. Data from the ISAM data set begins in the third logical record.

n(y+2) + 158
78

x =

IEBISAM

190 z/OS V2R13.0 DFSMSdfp Utilities

7. For variable records, all records in the data set must have a length equal to or
greater than RKP plus KEYLEN.

Creating an ISAM Data Set from an Unloaded Data Set
An ISAM data set can be created from an unloaded version of an ISAM data set.
When the unloaded data set is loaded, those records that were contained in the
overflow area assigned to the original ISAM data set are moved sequentially into
the primary area of the loaded ISAM data set.

Printing the Logical Records of an ISAM Data Set
The records of an ISAM data set can be printed or stored as a sequential data set
for subsequent printing. Each input record is placed in a buffer from which it is
printed or placed in a sequential data set. When the DELETE parameter is specified
in the OPTCD field, each input record not marked for deletion is also placed in a
buffer from which it is printed or placed in a sequential data set. Each printed
record is converted to hexadecimal unless specified otherwise by you.

Using IEBISAM User Exits
This section is intended to help you invoke exit routines with IEBISAM. This section
documents General-use Programming Interface and Associated Guidance
Information provided by DFSMS.

General-use programming interfaces allow the customer to write programs that
obtain the services of DFSMS.

IEBISAM provides user exits so that you can include user-written routines to
perform these tasks:

v Modify records before printing.

v Select records for printing or stop the printing operation after a certain number of
records have been printed.

v Convert the format of a record to be printed.

v Provide a record heading for each record if the record length is at least 18 bytes.

If no user routines are provided, each record is identified in sequential order on the
printout.

Exit routines must be included in the job library, step library, or link library.

Figure 38. An Unloaded Data Set Created Using IEBISAM

IEBISAM

Chapter 8. IEBISAM Program 191

When a user routine is supplied for a print operation, IEBISAM issues a LOAD
macro instruction to make the routine available. IEBISAM uses a BALR 14,15
instruction to give control to the user’s routine in a 24–bit addressing mode. When
the user’s routine receives control, register 0 contains a pointer to a record heading
buffer; register 1 contains a pointer to an input record buffer. (You must save
registers 2 through 14 when control is given to the user routine.)

The input record buffer has a length equal to that of the input logical record.

Figure 39 shows the record heading buffer.

You return control to IEBISAM by issuing a RETURN macro instruction (via register
14) or by using a BR 14 instruction after restoring registers 2 through 14.

A user routine must place a return code in register 15 before returning control to
IEBISAM. The possible return codes and their meanings are listed in Table 30.

Table 30. IEBISAM User Exit Return Codes

Codes Meaning

00 (X'00') Buffers are to be printed. The operation continues.

04 (X'04') Buffers are to be printed. The operation is ended.

08 (X'08') This input record is not to be printed. Processing continues.

12 (X'0C') This input record is not to be printed. The operation is ended.

Input and Output
IEBISAM uses an input data set as follows:

v If a data set is to be copied, unloaded, or printed in logical sequence, the input is
an ISAM data set.

v If a data set is to be loaded, the input is an unloaded version of an ISAM data
set.

IEBISAM produces as output:

v An output data set, which is the result of the IEBISAM operation.

Figure 39. Record Heading Buffer Used by IEBISAM

IEBISAM

192 z/OS V2R13.0 DFSMSdfp Utilities

v A message data set, which contains information messages and any error
messages.

See Appendix A.

Control
IEBISAM is controlled by job control statements only. No utility control statements
are required.

Table 31 shows the job control statements for IEBISAM.

Table 31. Job Control Statements for IEBISAM

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEBISAM). Additional information is
required on the EXEC statement to control the execution of IEBISAM; see
EXEC Statement

SYSUT1 DD Defines the input data set.

SYSUT2 DD Defines the output data set.

SYSPRINT DD Defines a sequential data set for messages, which can be written to a
system output device, a tape volume, or a direct access device. If the
block size is not a multiple of 121, a default value of 121 is taken (no
error message is issued, and no condition code is set).

EXEC Statement
The PARM parameter on the EXEC statement is used to control the execution of
IEBISAM.

The syntax of the EXEC statement is:

//[stepname] EXEC PGM=IEBISAM
,PARM={COPY|UNLOAD|LOAD|

PRINTL[,N][,EXIT=
routinename]}

where:

PARM={COPY|UNLOAD|LOAD|PRINTL[,N] [,EXIT=routinename]}
specifies the action IEBISAM will perform.

COPY
specifies a copy operation. The SYSUT2 DD statement must include a
primary space allocation that is sufficient to accommodate records that were
contained in overflow areas in the original ISAM data set. New overflow
areas can be specified when the data set is copied.

UNLOAD
specifies an unload operation. Specifications that are implied by default or
included in the DCB parameter of the SYSUT2 DD statement (for example,
tape density) must be considered when the data set is subsequently
loaded. If a block size is specified in the DCB parameter of the SYSUT2
DD statement, it must be a multiple of 80 bytes. UNLOAD is the default.

IEBISAM

Chapter 8. IEBISAM Program 193

LOAD
specifies a load operation. If the input data set resides on an unlabeled
tape, the SYSUT1 DD statement must specify a BLKSIZE that is a multiple
of 80 bytes. Specifications that are implied by default or included in the
DCB parameter of the SYSUT1 DD statement must be consistent with
specifications that were implied or included in the DCB parameter of the
SYSUT2 DD statement used for the UNLOAD operation. The SYSUT2 DD
statement must include a primary space allocation that is sufficient to
accommodate records that were contained in overflow areas in the original
ISAM data set. If new overflow areas are desired, they must be specified
when the data set is loaded.

PRINTL[,N][,EXIT=routinename]
specifies a print operation. If the device defined by the SYSUT2 DD
statement is a printer, the specified BLKSIZE must be equal to or less than
the physical printer size. If BLKSIZE is not specified, 121 bytes is assumed.
LRECL (or BLKSIZE when no LRECL was specified) must be between 55
and 255 bytes. PRINTL by itself will cause each record to be converted to
hexadecimal before printing. You can override this by specifying:

N to indicate that records are to be printed without being converted to
hexadecimal.

EXIT=routinename
to indicate the name of an exit routine that is to receive control before
each record is printed. Exit routines must be included in either the job
library or the link library.

For a discussion of the linkage conventions used for exit routines, see
“Printing the Logical Records of an ISAM Data Set” on page 191.

If you specify N or EXIT with PRINTL, you must enclose the expressions in
parentheses or apostrophes.

IEBISAM Examples
The following examples illustrate some of the uses of IEBISAM. Table 32 can be
used as a quick-reference guide to IEBISAM examples. The numbers in the
“Example” column point to the examples that follow.

Table 32. IEBISAM Example Directory

Operation Data Set
Organization

Device Comments Example

COPY ISAM Disk Unblocked input; blocked output. Prime
area and index separation.

1

LOAD Sequential, ISAM Tape and Disk Input data set is second data set on
tape volume.

3

PRINTL ISAM, Sequential Disk and Printer Blocked input. Output not converted. 4

UNLOAD ISAM, Sequential Disk and Tape Blocked output. 2

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

IEBISAM

194 z/OS V2R13.0 DFSMSdfp Utilities

Example 1: Copy Data Set from Two Volumes
In this example, an ISAM data set is copied from two DASD volumes. The output
data is blocked.

//CPY JOB ...
//STEP1 EXEC PGM=IEBISAM,PARM=COPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=ISAM01,VOLUME=SER=(222222,333333),
// DISP=(OLD,DELETE),UNIT=(disk,2),
// DCB=(DSORG=IS,LRECL=500,BLKSIZE=500,RECFM=F,RKP=4)
//SYSUT2 DD DSNAME=ISAM02(INDEX),UNIT=disk,
// DCB=(DSORG=IS,BLKSIZE=1000,RECFM=FB),
// DISP=(NEW,KEEP),VOLUME=SER=444444,SPACE=(CYL,(2))
// DD DSNAME=ISAM02(PRIME),UNIT=(disk,2),
// DCB=(DSORG=IS,BLKSIZE=1000,RECFM=FB),DISP=(NEW,KEEP),
// SPACE=(CYL,(10)),VOLUME=SER=(444444,555555),

The job control statements are discussed below:

v EXEC specifies the program name (IEBISAM) and the COPY operation.

v SYSUT1 DD defines an ISAM input data set, ISAM01, which resides on two disk
volumes.

v SYSUT2 DD defines the output data set index area, ISAM02; the index and
prime areas are separated.

v The second SYSUT2 DD defines the output data set prime area. Ten cylinders
are allocated for the prime area on each of the two disk volumes.

Example 2: Unload an ISAM Data Set
In this example, an ISAM input data set is unloaded into a sequential data set; the
output is placed on a tape volume.

//CONVERT2 JOB ...
//STEP1 EXEC PGM=IEBISAM,PARM=UNLOAD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=INDSEQ,UNIT=disk,DISP=(OLD,KEEP),
// VOLUME=SER=111112
//SYSUT2 DD DSNAME=UNLDSET,UNIT=tape,LABEL=(,SL),
// DISP=(,KEEP),VOLUME=SER=001234,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=640)

The job control statements are discussed below:

v EXEC specifies the program name (IEBISAM) and the UNLOAD operation.

v SYSUT1 DD defines the ISAM input data set, INDSEQ, which resides on a disk
volume.

v SYSUT2 DD defines the unloaded output data set, UNLDSET. The data set
consists of fixed blocked records, and is to reside as the first or only data set on
a tape volume.

Example 3: Load an Unloaded ISAM Data Set
In this example, an unloaded data set is converted to the form of the original ISAM
data set.

//CONVERT3 JOB ...
//STEP1 EXEC PGM=IEBISAM,PARM=LOAD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=UNLDSET,UNIT=tape,LABEL=(2,SL),
// DISP=(OLD,KEEP),VOLUME=SER=001234
//SYSUT2 DD DSNAME=INDSEQ,DISP=(,KEEP),DCB=(DSORG=IS),
// SPACE=(CYL,(1)),VOLUME=SER=111112,UNIT=disk

IEBISAM

Chapter 8. IEBISAM Program 195

The job control statements are discussed below:

v EXEC specifies the program name (IEBISAM) and the LOAD operation.

v SYSUT1 DD defines the input data set, UNLDSET, which is a sequential
(unloaded) data set. The data set is the second data set on a tape volume.

v SYSUT2 DD defines the output data set, INDSEQ which is an ISAM data set.
One cylinder of space is allocated for the data set on a disk volume.

Example 4: Print an ISAM Data Set
In this example, the logical records of an ISAM data set are printed on a system
output device.

//PRINT JOB ...
//STEP1 EXEC PGM=IEBISAM,PARM=’PRINTL,N’
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=ISAM03,UNIT=disk,DISP=OLD,
// VOLUME=SER=222222
//SYSUT2 DD SYSOUT=A

The job control statements are discussed below:

v EXEC specifies the program name (IEBISAM) and the PRINTL operation. Since
N is specified, the output records are not converted to hexadecimal prior to
printing.

v SYSUT1 DD defines the input data set, ISAM03, which resides on a disk volume.

v SYSUT2 DD defines the output data set (in this case, the system printer). A
logical record length (LRECL) of 121 bytes is assumed.

IEBISAM

196 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 9. IEBPTPCH (Print-Punch) Program

You can use IEBPTPCH to print or punch all, or selected portions, of a sequential
or partitioned data set or PDSE. Data can also be “printed” or “punched” to disk or
tape.

IEBPTPCH can be used to print or punch:
v A sequential or partitioned data set or PDSE, in its entirety
v Selected members from a partitioned data set or PDSE
v Selected records from a sequential or partitioned data set or PDSE
v The directory of a partitioned data set or PDSE
v An edited version of a sequential or partitioned data set or PDSE
v A data set containing double-byte character set data

You can specify the format for the records that you are printing or punching, or you
can use IEBPTPCH’s default formats. The default formats are:

v Each logical output record begins on a new printed line or punched card.

v Each printed line consists of groups of eight characters separated by two blanks.
Up to 96 data characters can be included on a printed line. Each punched card
contains up to 80 contiguous bytes of information.

v Characters that cannot be printed appear as blanks.

v When the input is blocked, each logical output record is delimited by “*” and each
block is delimited by “**”.

v Sixty lines per page will be printed.

If you specify your own format, using the RECORD utility control statement, make
sure that your output record length does not exceed the capability of the output
device.

IEBPTPCH provides optional editing facilities and exits for routines that you want to
use to process labels or manipulate input or output records.

Printing or Punching an Entire Data Set or Selected Member
You can use IEBPTPCH to print or punch an entire sequential or partitioned data
set or PDSE, or only a selected member of a partitioned data set or PDSE.
Members can be selected using the MEMBER utility control statement.

Data sets can be printed in hexadecimal if you choose. If you are printing a data set
containing packed decimal data, the packed decimal data should be converted to
unpacked decimal or hexadecimal mode to ensure that all characters are printable.
Use the RECORD utility control statement to specify data conversion.

Printing or Punching an Edited Data Set
IEBPTPCH can be used to print or punch an edited version of a sequential or a
partitioned data set or PDSE. Utility control statements can be used to specify
editing information that applies to a record, a group of records, selected groups of
records, or an entire member or data set. You can print up to 144 characters per
line.

An edited data set is produced by:

v Rearranging or omitting defined data fields within a record

© Copyright IBM Corp. 1979, 2002 197

v Converting data from packed decimal to unpacked decimal or from alphanumeric
to hexadecimal representation

Printing or Punching Double-Byte Character Set Data
Using IEBPTPCH, you can print or punch data sets that contain double-byte
character set (DBCS) data. A double-byte character set is used to represent
languages too complex for the standard single-byte character set. Japanese, for
example, requires a double-byte character set. To indicate that DBCS data must be
processed, code the DBCS=YES parameter on the PRINT or PUNCH statements.

Double-byte character set strings are identified by being enclosed in the shift-out (<)
and shift-in (>) characters. When IEBPTPCH sees the shift-out character, it
understands that your data is now “shifting out” of a single-byte character set string,
and when it sees the shift-in character, it understands that your data is now “shifting
into” a single-byte character set string.

Each byte in a double-byte character must have a value between X'41' and X'FE'
inclusive, or the DBCS character must be a DBCS space (X'4040'). You can use
IEBPTPCH to verify that your data conforms to this standard before it is printed or
punched. If needed, IEBPTPCH can also insert the shift-out/shift-in characters. This
checking can be specified using the conversion variables in the FIELD parameter of
the RECORD statement.

The default printing format for data sets with DBCS data is different from the default
for single-byte character set data. The maximum number of DBCS characters will
be printed for each output line, when you code PRINT DBCS=YES. IEBPTPCH will
ensure that an output record will not end within a DBCS string. If an entire DBCS
string will not fit on one printed line, IEBPTPCH will enclose each line in
shift-out/shift-in characters. These control characters will not be printed, but will
ensure that the printer recognizes the data as DBCS strings.

Printing or Punching Selected Records
IEBPTPCH makes it possible for you to select only certain records from a data set
for printing or punching. Utility control statements can be used to specify:

v The termination of a print or punch operation after a specified number of records
has been printed or punched

v The printing or punching of every nth record

v The starting of a print or punch operation after a specified number of records

Printing or Punching a Partitioned Directory
You can print or punch the contents of a partitioned directory using IEBPTPCH. If
the directory is printed in hexadecimal representation, the first four printed
characters of each directory block indicate the total number of bytes used in that
block. For details of the format of the directory, see z/OS DFSMS: Using Data Sets.
If the directory is punched, data from the directory block is punched in contiguous
columns in the punched cards representing that block.

Although PDSE directories do not contain blocks, they will be printed or punched in
the same format as the directory of a partitioned data set.

IEBPTPCH

198 z/OS V2R13.0 DFSMSdfp Utilities

Printing or Punching to Disk or Tape
You can use IEBPTPCH to “print” or “punch” a data set to disk or tape. If you do so,
the first character of each record will be an ASA carriage control character, which is
used to control the printing or punching operation. You can print or punch the data
set at a later time using the PREFORM=A parameter of the PRINT and PUNCH
statements.

If you punch a data set to disk or tape, you can, at your option, include sequence
numbers in positions 73 through 80.

If the data set contains double-byte character set data, shift-out/shift-in characters
(< and >) will be inserted at the beginning and end of a record if the DBCS string
exceeds the logical record length of the output data set.

Input and Output
IEBPTPCH uses the following input:

v An input data set, which contains the data that is printed or punched. The input
data set can be either sequential or partitioned.

v A control data set, which contains utility control statements. The control data set
is required for each use of IEBPTPCH.

IEBPTPCH produces the following output:

v An output data set, which is the printed or punched data set.

v A message data set, which contains informational messages (for example, the
contents of the control statements) and any error messages.

If IEBPTPCH is invoked from an application program, you can dynamically allocate
the data sets by issuing SVC 99 before calling IEBPTPCH.

See Appendix A for IEBPTPCH return codes.

Control
IEBPTPCH is controlled by job and utility control statements. The job control
statements are required to process or load the IEBPTPCH program and to define
the data sets that are used and produced by the program. The utility control
statements are used to control the functions of IEBPTPCH.

Job Control Statements
Table 33 shows the job control statements for IEBPTPCH.

Table 33. Job Control Statements for IEBPTPCH

Statement Use

JOB Starts the job step.

EXEC Specifies the program name (PGM=IEBPTPCH) or, if the job control
statements reside in a procedure library, the procedure name.

SYSPRINT DD Defines a sequential data set for messages. The data set can be written
to a system output device, a tape volume, or a direct access device.

SYSUT1 DD Defines an input sequential or partitioned data set, or PDSE.

SYSUT2 DD Defines the output (print or punch) data set.

IEBPTPCH

Chapter 9. IEBPTPCH (Print-Punch) Program 199

Table 33. Job Control Statements for IEBPTPCH (continued)

Statement Use

SYSIN DD Defines the control data set. The control data set normally resides in the
input stream; however, it can be defined as a member in a partitioned
data set or PDSE.

SYSPRINT DD Statement
The SYSPRINT DD statement is required for each use of IEBPTPCH. The record
format is always FBA, the logical record length is always 121. Output can be
blocked by specifying a block size that is a multiple of 121 on the SYSPRINT DD
statement. The default block size is 121.

SYSUT1 DD Statement
The SYSUT1 DD statement is required for each use of IEBPTPCH. The record
format (except for undefined records), block size and logical record length (except
for undefined and fixed unblocked records) must be present on the DD statement,
in the DSCB, or on the tape label.

The input data set can contain fixed, variable, undefined, or variable spanned
records. Variable spanned records are permitted only when the input is
sequential.The block size cannot exceed 32760 bytes.

Directories of partitioned data sets or PDSEs are considered sequential data sets.
Specify TYPORG=PS on the PRINT or PUNCH statement. You must specify
RECFM=U, BLKSIZE=256, and LRECL=256 on the SYSUT1 DD statement.

SYSUT2 DD Statement
The SYSUT2 DD statement is required every time IEBPTPCH is used. The record
format is always FBA or FBM. The LRECL parameter, or, if no logical record length
is specified, the BLKSIZE parameter, specifies the number of characters to be
written per printed line or per punched card (this count must include the control
character). The number of characters specified must be in the range of 2 through
145. The default values for edited output lines are 121 characters per printed line
and 81 characters per punched card.

The SYSUT2 data set can be blocked by specifying both the LRECL and the
BLKSIZE parameters, in which case, block size must be a multiple of logical record
length. The block size cannot exceed 32760 bytes.

Both the output data set and the message data set can be written to the system
output device if it is a printer.

If the logical record length of the input records is such that the output would exceed
the output record length, IEBPTPCH divides the record into multiple lines or cards
in the case of standard printed output, standard punched output, or when the
PREFORM parameter is specified. For nonstandard output, or if the PREFORM
parameter is not specified, only part of the input record is printed or punched
(maximums determined by the specific characteristics of your output device).

SYSIN DD Statement
The SYSIN DD statement is required for each use of IEBPTPCH. The record format
is always FB, the logical record length is always 80. Any blocking factor that is a
multiple of 80 yp to 32760 can be specified for the block size. The default block
size is 80.

IEBPTPCH

200 z/OS V2R13.0 DFSMSdfp Utilities

Utility Control Statements
IEBPTPCH is controlled by utility control statements. The control statements in
Table 34 are shown in the order in which they must appear.

Control statements are included in the control data set, as required. Any number of
MEMBER and RECORD statements can be included in a job step.

A nonblank character in column 72 is optional for IEBPTPCH continuation
statements. Continuation requirements for utility control statements are described in
“Continuing Utility Control Statements” on page 8.

Table 34. IEBPTPCH Utility Control Statements

Statement Use

PRINT Specifies that the data is printed.

PUNCH Specifies that the data is punched.

TITLE Specifies that a title is to precede the printed or punched data.

EXITS Specifies that you are providing exit routines.

MEMBER Specifies which member of a partitioned data set or PDSE you want
printed or punched.

RECORD Specifies the format in which you want your data printed or punched.

LABELS Specifies whether your labels are to be treated as data.

PRINT and PUNCH Statements
You use the PRINT and PUNCH statements to specify whether the data set is to be
printed or punched. You must include one of these statements as the first statement
of your control data set. You cannot use both statements at once, and you cannot
use a statement more than once.

The syntax of the PRINT and PUNCH statements is:

[label] {PRINT|
PUNCH}

[PREFORM={A|M}]
[,TYPORG={PS|PO}]
[,TOTCONV={XE|PZ}]
[,CNTRL={n|1}]
[,STRTAFT=n]
[,STOPAFT=n]
[,SKIP=n]
[,MAXNAME=n]
[,MAXFLDS=n]
[,MAXGPS=n]
[,MAXLITS=n]
[,DBCS={YES|NO}]
[,INITPG=n]
[,MAXLINE=n]
[,CDSEQ=n]
[,CDINCR=n]

Note:
v INITPG and MAXLINE can only be specified with PRINT
v CDSEQ and CDINCR can only be specified with PUNCH

where:

IEBPTPCH

Chapter 9. IEBPTPCH (Print-Punch) Program 201

PREFORM={A|M}
specifies that a control character is provided as the first character of each
record to be printed or punched. The control characters are used to control the
spacing, number of lines per page, page ejection, and selecting a stacker. That
is, the output has been previously formatted, and should be printed or punched
according to that format. If an error occurs, the print/punch operation is stopped.
If PREFORM is coded, any additional PRINT or PUNCH operands other
than TYPORG, and all other control statements except for LABELS, are
ignored. Any ignored statement or operands are checked for correct
syntax, however. PREFORM must not be used for printing or punching data
sets with VS or VBS records longer than 32K bytes. These values are coded as
follows:

A specifies that an ASA control character is provided as the first character of
each record to be printed or punched. If the input record length exceeds the
output record length, the utility uses the ASA character for printing the first
line, with a single space character on all subsequent lines of the record (for
PRINT), or duplicates the ASA character on each output card of the record
(for PUNCH).

If you are printing or punching a data set that was formatted using
IEBPTPCH, PREFORM=A should be coded.

M specifies that a machine-code control character is provided as the first
character of each record to be printed or punched. If the input record length
exceeds the output record length, the utility prints all lines of the record with
a print-skip-one-line character until the last line of the record, which will
contain the actual character provided as input (for PRINT), or duplicates the
machine control character on each output card of the record (for PUNCH).

TYPORG={PS|PO}
specifies the organization of the input data set. These values are coded as
follows:

PS
specifies that the input data set is organized sequentially. This is the
default.

PO
specifies that the input data set is partitioned.

TOTCONV={XE|PZ}
specifies the representation of data to be printed or punched. TOTCONV can
be overridden by any user specifications (RECORD statements) that pertain to
the same data. These values are coded as follows:

XE
specifies that data is punched in 2-character-per-byte hexadecimal
representation (for example, C3 40 F4 F6). If XE is not specified, data is
punched in 1-character per byte alphanumeric representation. The above
example would appear as C 46.

The converted portion of the input record (length L) occupies 2L output
characters.

PZ
specifies that data (packed decimal mode) is converted to unpacked
decimal mode. IEBPTPCH does not check for packed decimal mode.

The converted portion of the input record (length L) occupies 2L-1 output
characters when punching, and 2L output characters

IEBPTPCH

202 z/OS V2R13.0 DFSMSdfp Utilities

Default: If TOTCONV is omitted, data is not converted.

CNTRL={n|1}
For PRINT, CNTRL specifies an ASA control character for the output device that
indicates line spacing, as follows: 1 indicates single spacing (the default), 2
indicates double spacing, and 3 indicates triple spacing.

For PUNCH, CNTRL specifies an ASA control character for the output device
that is used to select the stacker, as follows: 1 indicates the first stacker (the
default), 2 indicates the second stacker, and 3 indicates the third stacker, if any.

STRTAFT=n
specifies, for sequential data sets, the number of logical records (physical
blocks in the case of variable spanned (VS) or variable block spanned (VBS)
records longer than 32K bytes) to be skipped before printing or punching
begins. For partitioned data sets or PDSEs, STRTAFT specifies the number of
logical records to be skipped in each member before printing or punching
begins. The n value must not exceed 32767. If STRTAFT is specified and
RECORD statements are present, the first RECORD statement of a member
describes the format of the first logical record to be printed or punched.

STOPAFT=n
specifies, for sequential data sets, the number of logical records (or physical
blocks in the case of VS or VBS records longer than 32K bytes) to be printed or
punched. For partitioned data sets or PDSEs, this specifies the number of
logical records (or physical blocks in the case of VS or VBS records longer than
32K bytes) to be printed or punched in each member to be processed. The n
value must not exceed 32767. If STOPAFT is specified and the IDENT
parameter of the RECORD statement is also specified, the operation is
stopped. when the STOPAFT count is satisfied or at the end of the first record
group, whichever occurs first.

SKIP=n
specifies that every nth record (or physical block in the case of VS or VBS
records longer than 32K bytes) is printed or punched.

Default: Successive logical records are printed or punched.

MAXNAME=n
specifies a number no less than the total number of member names and aliases
appearing in subsequent MEMBER statements. The value must not exceed
32767.

If MAXNAME is omitted when there is a MEMBER statement present, the print
or punch request is stopped.

MAXFLDS=n
specifies a number no less than the total number of FIELD parameters
appearing in subsequent RECORD statements. The value must not exceed
32767.

If MAXFLDS is omitted when there is a FIELD parameter present, the print or
punch request is stopped.

MAXGPS=n
specifies a number no less than the total number of IDENT parameters
appearing in subsequent RECORD statements. The value must not exceed
32767.

If MAXGPS is omitted when there is an IDENT parameter present, the print or
punch request is stopped.

IEBPTPCH

Chapter 9. IEBPTPCH (Print-Punch) Program 203

MAXLITS=n
specifies a number no less than the total number of characters contained in the
IDENT literals of subsequent RECORD statements. The value must not exceed
32767.

If MAXLITS is omitted when there is a literal present, the print or punch request
is ended.

DBCS={YES|NO}
specifies whether the data set to be printed or punched contains double-byte
character set data. NO is the default.

INITPG=n
specifies the initial page number; the pages are numbered sequentially
thereafter. The INITPG value must not exceed 9999. The default is 1.

INITPG can only be coded with the PRINT statement.

MAXLINE=n
specifies the maximum number of lines to a printed page. Spaces, titles, and
subtitles are included in this number. The default is 60 lines per page.

MAXLINE can only be coded with the PRINT statement.

CDSEQ=n
specifies the first sequence number of a deck of punched cards. This value
must be contained in columns 73 through 80. Sequence numbering is initialized
for each member of a partitioned data set. The default is that cards are not
numbered.

CDSEQ can only be coded with the PUNCH statement.

CDINCR=n
specifies the increment to be used in generating sequence numbers. The
default increment value is 10, unless CDSEQ is not coded, in which case the
records are not numbered.

CDINCR can only be coded with the PUNCH statement.

TITLE Statement
Use the TITLE statement to specify any titles or subtitles you want printed or
punched with your data set. Two TITLE statements can be included for each use of
IEBPTPCH. A first TITLE statement defines the title, and a second defines the
subtitle. The TITLE statement, if included, follows the PRINT or PUNCH statement
in the control data set.

If you are printing a data set, the titles you specify will be printed on every page.

The syntax of the TITLE statement is:

[label] TITLE ITEM=('title'[,
output-location])[,ITEM=...]

where:

ITEM=('title'[,output-location])
specifies title or subtitle information. The values that can be coded are:

'title'
specifies the title or subtitle literal (maximum length of 40 bytes), enclosed
in apostrophes. If the literal contains apostrophes, each apostrophe must be
written as two consecutive apostrophes. The literal coded for 'title' is not

IEBPTPCH

204 z/OS V2R13.0 DFSMSdfp Utilities

affected by the TOTCONV parameter of the PRINT or PUNCH statements.
You can specify a double-byte character set string as your title. To do so,
enclose the DBCS string in shift-out/shift-in characters (< and >).

You can also specify the title in hexadecimal. To do so, code the title as title
. This is especially useful if you do not have a keyboard that has all the
characters you need. The shift-out/shift-in characters are X'0E' and X'0F',
respectively.

output-location
specifies the starting position at which the literal for this item is placed in
the output record. When used with output-location, the specified title’s
length plus output-location may not exceed the output logical record length
minus one.

Default: The first position (byte) is assumed.

You can specify ITEM more than once on a TITLE statement. In this way, you
can have titles longer than 40 characters, or you can format your title according
to your needs.

EXITS Statement
The EXITS statement is used to identify exit routines that you want IEBPTPCH to
use for label or record processing. Exits to label processing routines are ignored if
the input data set is partitioned. Linkage to and from user routines are discussed in
Appendix C, “Specifying User Exits with Utility Programs” on page 341.

The EXITS statement, if used, must immediately follow any TITLE statement or
follow the PRINT or PUNCH statement.

The syntax of the EXITS statement is:

[label] EXITS [INHDR=routinename]
[,INTLR=routinename]
[,INREC=routinename]
[,OUTREC=routinename]

where:

INHDR=routinename
specifies the name of the routine that processes user input header labels.

INTLR=routinename
specifies the name of the routine that processes user input trailer labels.

INREC=routinename
specifies the name of the routine that manipulates each logical record (or
physical block in the case of VS or VBS records longer than 32K bytes) before
it is processed.

OUTREC=routinename
specifies the name of the routine that manipulates each logical record (or
physical block in the case of VS or VBS records longer than 32K bytes) before
it is printed or punched.

MEMBER Statement
You use the MEMBER statement to identify members of partitioned data sets or
PDSEs that you want printed or punched. All RECORD statements that follow a
MEMBER statement pertain to the member indicated in that MEMBER statement
only. When RECORD and MEMBER statements are used, at least one MEMBER

IEBPTPCH

Chapter 9. IEBPTPCH (Print-Punch) Program 205

statement must precede the first RECORD statement. If no RECORD statement is
used, the member is processed according to the default format.

If no MEMBER statement appears, and a partitioned data set or PDSE is being
processed, all members of the data set are printed or punched. Any number of
MEMBER statements can be included in a job step.

If a MEMBER statement is present in the input stream, MAXNAME must be
specified in a PRINT or PUNCH statement.

The syntax of the MEMBER statement is:

[label] MEMBER NAME={membername|aliasname}

where:

NAME={membername|aliasname}
specifies a member of a partitioned data set or PDSE to be printed or punched.
The values that can be coded are:

membername
specifies a member by its member name.

aliasname
specifies a member by its alias name.

If a MEMBER statement is present in the input stream, MAXNAME must be
specified in a PRINT or PUNCH statement.

RECORD Statement
The RECORD statement is used to define a group of records, called a record
group, that is printed or punched to your specifications. A record group consists of
any number of records to be edited identically.

If no RECORD statements appear, the entire data set, or named member, is printed
or punched in the default format. The default format will have the following
characteristics:

v Each printed line contains groups (8 characters each) of hexadecimal
information.

v Each input record begins a new line of printed output.

v The size of the input record and the carriage width determine how many lines of
printed output are required per input record.

If a RECORD statement is used, all data following the record group it defines
(within a partitioned member or within an entire sequential data set) must be
defined with other RECORD statements. Any number of RECORD statements can
be included in a job step.

A RECORD statement referring to a partitioned data set or PDSE for which no
members have been named need contain only FIELD parameters. These are
applied to the records in all members of the data set.

If a FIELD parameter is included in the RECORD statement, MAXFLDS must be
specified in the PRINT or PUNCH statement.

If an IDENT parameter is included in the RECORD statement, MAXGPS and
MAXLITS must be specified in the PRINT or PUNCH statement.

IEBPTPCH

206 z/OS V2R13.0 DFSMSdfp Utilities

The syntax of the RECORD statement is:

[label] RECORD [IDENT=(length,'name',
input-location)]
[,FIELD=(length,[input-location],[conversion],

[output-location])][,FIELD=...]

where:

IDENT=(length,'name',input-location)
identifies the last record of the record group to which the FIELD parameters
apply. The values that can be coded are:

length
specifies the length (in bytes) of the field that contains the identifying name
in the input records. The length cannot exceed 8 bytes.

'name'
specifies the exact literal, enclosed in apostrophes, that identifies the last
record of a record group. If the literal contains apostrophes, each must be
written as two consecutive apostrophes.

You can specify 'name' in hexadecimal by coding name . You can also
specify a DBCS string for 'name', either in DBCS characters or in the
hexadecimal representation of DBCS characters. If you use hexadecimal for
a DBCS string, the hexadecimal values of the shift-out/shift-in characters
are X'0E' and X'0F', respectively.

input-location
specifies the starting location of the field that contains the identifying name
in the input records.

The sum of the length and the input location must be equal to or less than the
input logical record length plus one.

Default: If IDENT is omitted and STOPAFT is not included with the PRINT or
PUNCH statement, record processing stops after the last record in the data set.
If IDENT is omitted and STOPAFT is included with the PRINT or PUNCH
statement, record processing halts when the STOPAFT count is satisfied or
after the last record of the data set is processed, whichever occurs first.

If an IDENT parameter is included in the RECORD statement, MAXGPS and
MAXLITS must be specified in the PRINT or PUNCH statement.

FIELD=(length,[input-location],[conversion],[output-location])
specifies field-processing and editing information.

Note that the variables on the FIELD parameter are positional; that is, if any of
the options are not coded, the associated comma preceding that variable must
be coded.

These values can be coded:

length
specifies the length (in bytes) of the input field to be processed. The length
must be equal to or less than the first input logical record length.

input-location
specifies the starting position of the input field to be processed. The sum of
the length and the input location must be equal to or less than the input
logical record length plus one.

IEBPTPCH

Chapter 9. IEBPTPCH (Print-Punch) Program 207

Default: The first position (byte) is assumed.

conversion
specifies the type of conversion to be performed on this field before it is
printed or punched. The values that can be coded are:

CV
specifies that double-byte character set characters are combined with
single-byte character set characters, and that the DBCS characters
should be checked to ensure that they are printable. No shift-out/shift-in
characters will be inserted to enclose DBCS strings.

DBCS=YES must be specified on the PRINT or PUNCH statement.

PZ
specifies that packed decimal data is to be converted to unpacked
decimal data. The converted portion of the input record (length L)
occupies 2L - 1 output characters when punching, and 2L output
characters when printing.

VC
specifies that double-byte character set characters should be checked
to ensure that they are printable, and that shift-out/shift-in characters (<
and >) are to be inserted to enclose the DBCS strings.

DBCS=YES must be specified on the PRINT or PUNCH statement.

XE
specifies that alphanumeric data is to be converted to hexadecimal
data. The converted portion of the input record (length L) occupies 2L
output characters.

Default: The field is moved to the output area without change.

output-location
specifies the starting location of this field in the output records. Unspecified
fields in the output records appear as blanks in the printed or punched
output. Data that exceeds the SYSUT2 printer or punch size is not printed
or punched. When specifying one or more FIELDs, the sum of all lengths
and all extra characters needed for conversions must be equal to or less
than the output LRECL minus one.

Default: The first position (byte) is assumed.

If a FIELD parameter is included in the RECORD statement, MAXFLDS must
be specified in the PRINT or PUNCH statement.

LABELS Statement
You use the LABELS statement to specify whether you want your data set labels
treated as data. For a detailed discussion of this option, refer to “Processing User
Labels” on page 345.

You must specify LABELS DATA=NO to make standard user label (SUL) exits
inactive when you are processing an input data set with nonstandard labels (NSL).

If more than one valid LABELS statement is included, all but the last LABELS
statement are ignored.

IEBPTPCH

208 z/OS V2R13.0 DFSMSdfp Utilities

The syntax of the LABELS statement is:

[label] LABELS [CONV={PZ|XE}]
[,DATA={YES|NO|ALL|ONLY]}

where:

CONV={PZ|XE}
specifies the type of conversion to be performed on this field before it is printed
or punched. The values that can be coded are:

PZ
specifies that data (packed decimal) is converted to unpacked decimal data.
The converted portion of the input record (length L) occupies 2L - 1 output
characters when punching, and 2L output characters when printing.

XE
specifies that alphanumeric data is to be converted to hexadecimal data.
The converted portion of the input record (length L) occupies 2L output
characters.

Default: The field is moved to the output area without change.

DATA={YES|NO|ALL|ONLY}
specifies whether user labels are to be treated as data. The values that can be
coded are:

YES
specifies that any user labels are to be treated as data unless they have
been rejected by a label processing routine you have specified on the
EXITS statement. Processing of labels as data stops in compliance with
standard return codes. YES is the default.

NO
specifies that user labels are not to be treated as data. NO must be
specified when processing input/output data sets with nonstandard labels
(NSL) in order to make standard user label (SUL) exits inactive.

ALL
specifies that all user labels are to be treated as data. A return code of 16
causes the utility to complete the processing of the remainder of the group
of user labels and to stop the job step.

ONLY
specifies that only user header labels are to be treated as data. User
header labels are processed as data regardless of any return code. The job
ends upon return from the OPEN routine.

IEBPTPCH Examples
The following examples illustrate some of the uses of IEBPTPCH. Table 35 on
page 210 can be used as a quick-reference guide to IEBPTPCH examples. The
numbers in the “Example” column refer to the examples that follow:

IEBPTPCH

Chapter 9. IEBPTPCH (Print-Punch) Program 209

Table 35. IEBPTPCH Example Directory

Operation Data Set
Organization

Devices Comments Example

PRINT Partitioned Disk and
System Printer

Default format. Conversion to
hexadecimal. Ten records from each
member are printed.

8

PRINT Partitioned Disk and
System Printer

Default format. Conversion to
hexadecimal. Two members are
printed.

9

PRINT Partitioned Disk and
System Printer

Default format. DBCS data is checked
and printed.

10

PRINT Sequential System Printer Conversion to hexadecimal. 3

PRINT Sequential Tape and
System Printer

Default format. 4

PRINT Sequential Disk and
System Printer

User-specified format. User routines
are provided. Processing ends after the
third record group is printed or
STOPAFT is satisfied.

5

PRINT Sequential System Printer Print with user exit routine. 6

PRINT Sequential, Partitioned Disk and
System Printer

SYSOUT format. Conversion to
hexadecimal.

7

PUNCH Sequential Disk and Card
Punch

User-specified format. Sequence
numbers are assigned and punched.

1

PUNCH Sequential Card Reader
and Card Punch

User-specified format. A copy of a set
of cards is made.

2

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

Example 1: Print Partitioned Data Set
In this example, a member of partitioned data set is printed according to user
specifications.

PRINT TYPORG=P0,MAXNAME=1,MAXFLDS=1
MEMBER NAME=UTILUPD8
RECORD FIELD=(80)

If the member card entry is not used, the entire data cell will be printed.

Example 2: Punch Sequential Data Sets
In this example, a sequential data set is punched according to user specifications.

//PHSEQNO JOB ...
//STEP1 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=MASTER.SEQSET,LABEL=(,SUL),DISP=SHR
//SYSUT2 DD SYSOUT=B
//SYSIN DD *

PUNCH MAXFLDS=1,CDSEQ=0,CDINCR=20
RECORD FIELD=(72)
LABELS DATA=YES

/*

The control statements are discussed below:

IEBPTPCH

210 z/OS V2R13.0 DFSMSdfp Utilities

v SYSUT1 DD defines the input data set, MASTER.SEQSET, which resides on a
disk or tape volume. The data set contains 80-byte, fixed blocked records.

v SYSUT2 DD defines the system output class (punch is assumed). That portion of
each record from the input data set defined by the FIELD parameter is
represented by one punched card.

v SYSIN DD defines the control data set, which follows in the input stream.

v PUNCH begins the punch operation, indicates that one FIELD parameter is
included in a subsequent RECORD statement (MAXFLDS=1), and assigns a
sequence number for the first punched card (00000000) and an increment value
for successive sequence numbers (20). Sequence numbers are placed in
columns 73 through 80 of the output records.

v RECORD indicates that positions 1 through 72 of the input records are to be
punched. Bytes 73 through 80 of the input records are replaced by the new
sequence numbers in the output card deck.

v LABELS specifies that user header labels and user trailer labels are punched.

Labels cannot be edited; they are always moved to the first 80 bytes of the output
buffer. No sequence numbers are present on the cards containing user header and
user trailer records.

Example 3: Duplicate a Card Deck
In this example, a card deck containing valid punch card code or BCD is duplicated.

//PUNCH JOB ...
//STEP1 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSIN DD DSNAME=PDSLIB(PNCHSTMT),DISP=(OLD,KEEP)
//SYSUT2 DD SYSOUT=B
//SYSUT1 DD DATA

(input card data set including // cards)
/*

The control statements are discussed below:

v SYSIN DD defines the control data set PDSLIB which contains the member
PNCHSTMT. (The data set is cataloged.) The record format must be FB and the
logical record length must be 80.

v SYSUT2 DD defines the system output class (punch is assumed).

v SYSUT1 DD defines the input card data set, which follows in the input stream.

Example 4: Print Sequential Data Set According to Default Format
In this example, a sequential data set is printed according to the default format. The
printed output is converted to hexadecimal.

//PRINT JOB ...
//STEP1 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=INSET,UNIT=tape,
// LABEL=(,NL),VOLUME=SER=001234,
// DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=2000)
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT TOTCONV=XE
TITLE ITEM=(’PRINT SEQ DATA SET WITH CONV TO HEX’,10)

/*

The control statements are discussed below:

IEBPTPCH

Chapter 9. IEBPTPCH (Print-Punch) Program 211

v SYSUT1 DD defines the input data set on a tape volume. The data set contains
undefined records; no record is larger than 2,000 bytes.

v SYSUT2 DD defines the output data set. The data set is written to the system
output device (printer assumed).

v SYSIN DD defines the control data set, which follows in the input stream.

v PRINT begins the print operation and specifies conversion from alphanumeric to
hexadecimal representation.

v TITLE specifies a title to be placed beginning in column 10 of the printed output.
The title is not converted to hexadecimal.

Example 5: Print Sequential Data Set According to User Specifications
In this example, a sequential data set is printed according to user specifications.

//PTNONSTD JOB ...
//STEP1 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SEQSET,UNIT=tape,LABEL=(2,SUL),
// DISP=(OLD,KEEP),VOLUME=SER=001234
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT MAXFLDS=1
EXITS INHDR=HDRIN,INTLR=TRLIN
RECORD FIELD=(80)
LABELS DATA=YES

/*

The control statements are discussed below:

v SYSUT1 DD defines the input data set, SEQSET, which is the second data set
on a tape volume.

v SYSUT2 DD defines the output data set on the system output device (printer
assumed). Each printed line contains 80 contiguous characters (one record) of
information.

v SYSIN DD defines the control data set, which follows in the input stream.

v PRINT begins the print operation and indicates that one FIELD parameter is
included in a subsequent RECORD statement (MAXFLDS=1).

v EXITS indicates that exits will be taken to user header label and trailer label
processing routines when these labels are encountered on the SYSUT1 data set.

v RECORD indicates that each input record is processed in its entirety (80 bytes).
Each input record is printed in columns 1 through 80 on the printer.

v LABELS specifies that user header and trailer labels are printed according to the
return code issued by the user exits.

Example 6: Print Three Record Groups
In this example, three record groups are printed. A user routine is provided to
manipulate output records before they are printed.

//PRINT JOB ...
//STEP1 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SEQDS,UNIT=disk,DISP=(OLD,KEEP),
// LABEL=(,SUL),VOLUME=SER=111112
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT MAXFLDS=9,MAXGPS=9,MAXLITS=23,STOPAFT=32767
TITLE ITEM=(’TIMECONV-DEPT D06’),

ITEM=(’JAN10-17’,80)
EXITS OUTREC=NEWTIME,INHDR=HDRS,INTLR=TLRS
RECORD IDENT=(6,’498414’,1),

IEBPTPCH

212 z/OS V2R13.0 DFSMSdfp Utilities

FIELD=(8,1,,10),FIELD=(30,9,XE,20)
RECORD IDENT=(2,’**’,39),

FIELD=(8,1,,10),FIELD=(30,9,XE,20)
RECORD IDENT=(6,’498414’,1),

FIELD=(8,1,,10),FIELD=(30,9,XE,20)
LABELS CONV=XE,DATA=ALL

/*

The control statements are discussed below:

v SYSUT1 DD defines the input data set, called SEQDS. The data set resides on a
disk volume.

v SYSUT2 DD defines the output data set on the system output device (printer
assumed).

v SYSIN DD defines the control data set, which follows in the input stream.

v The PRINT statement:
1. Initializes the print operation.
2. Indicates that not more than nine FIELD parameters are included in

subsequent RECORD statements (MAXFLDS=9).
3. Indicates that not more than nine IDENT parameters are included in

subsequent RECORD statements (MAXGPS=9).
4. Indicates that not more than 23 literal characters are included in subsequent

IDENT parameters (MAXLITS=23).
5. Indicates that processing is ended after 32767 records are processed or after

the third record group is processed, whichever comes first. Because
MAXLINE is omitted, 60 lines are printed on each page.

v TITLE specifies two titles, to be printed on one line. The titles are not converted
to hexadecimal.

v EXITS specifies the name of a user routine (NEWTIME), which is used to
manipulate output records before they are printed.

v The first RECORD statement defines the first record group to be processed and
indicates where information from the input records is placed in the output
records. Positions 1 through 8 of the input records appear in positions 10 through
17 of the printed output, and positions 9 through 38 are printed in hexadecimal
representation and placed in positions 20 through 79.

v The second RECORD statement defines the second group to be processed. The
parameter in the IDENT operand specifies that an input record last record edited
according to the FIELD operand in this RECORD statement. The FIELD operand
specifies that positions 1 through 8 of the input records are placed in positions 10
through 17 of the printed output, and positions 9 through 38 are printed in
hexadecimal representation and appear in positions 20 through 79.

v The third and last RECORD statement is equal to the first RECORD statement.
An input record that meets the parameter in the IDENT operand ends
processing, unless the STOPAFT parameter in the PRINT statement has not
already done so.

v LABELS specifies that all user header or trailer labels are to be printed
regardless of any return code, except 16, issued by the user’s exit routine. It also
indicates that the labels are converted from alphanumeric to hexadecimal
representation (CONV=XE).

Example 7: Print a Pre-Formatted Data Set
In this example, the input is a SYSOUT (sequential) data set, which was previously
written as the second data set of a standard label tape. It is printed in SYSOUT
format.

IEBPTPCH

Chapter 9. IEBPTPCH (Print-Punch) Program 213

//PTSYSOUT JOB ...
//STEP1 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=tape,LABEL=(2,SL),DSNAME=LISTING,
// DISP=(OLD,KEEP),VOL=SER=001234
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT PREFORM=A
/*

The control statements are discussed below:

v SYSUT1 DD defines the input data set, which was previously written as the
second data set of a standard label tape. The data set has been assigned the
name LISTING.

v SYSUT2 DD defines the output data set on the system output device (printer
assumed).

v SYSIN DD defines the control data set, which follows in the input stream.

v The PRINT statement begins the print operation and indicates that an ASA
control character is provided as the first character of each record to be printed
(PREFORM=A).

Example 8: Print Directory of a Partitioned Data Set
In this example, the directory of a partitioned data set is printed according to the
default format. The printed output is converted to hexadecimal.

//PRINTDIR JOB ...
//STEP1 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=MAIN.PDS,
// DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=256)
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT TYPORG=PS,TOTCONV=XE
TITLE ITEM=(’PRINT PARTITIONED DIRECTORY OF PDS’,10)
TITLE ITEM=(’FIRST TWO BYTES SHOW NUM OF USED BYTES’,10)
LABELS DATA=NO

/*

The control statements are discussed below:

v SYSUT1 DD defines the input data set (the partitioned directory), which resides
on a disk volume. The DCB keywords describe the directory, not the member
contents.

v SYSUT2 DD defines the output data set on the system output device (printer
assumed).

v SYSIN DD defines the control data set, which follows in the input stream.

v PRINT begins the print operation, indicates that the partitioned directory is
organized sequentially, and specifies conversion from alphanumeric to
hexadecimal representation.

v The first TITLE statement specifies a title, and the second TITLE statement
specifies a subtitle. Neither title is converted to hexadecimal.

v LABELS specifies that no user labels are printed.

Note: Not all of the bytes in a directory block need to contain data pertaining to the
partitioned data set. Unused bytes are sometimes used by the operating
system as temporary work areas. With conversion to hexadecimal
representation, the first four characters of printed output indicate how many

IEBPTPCH

214 z/OS V2R13.0 DFSMSdfp Utilities

bytes of the 256-byte block pertain to the partitioned data set. Any unused
bytes occur in the latter portion of the directory block. They are not
interspersed with the used bytes.

Example 9: Print Selected Records of a Partitioned Data Set
In this example, a partitioned data set (ten records from each member) is printed
according to the default format. The printed output is converted to hexadecimal.

//PRINTPDS JOB ...
//STEP1 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=WAYNE.TEST.DATA,DISP=SHR
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT TOTCONV=XE,TYPORG=PO,STOPAFT=10
TITLE ITEM=(’PRINT PDS - 10 RECS EACH MEM’,20)

/*

The control statements are discussed below:

v SYSUT1 DD defines the input data set, called WAYNE.TEST.DATA, on a disk
volume.

v SYSUT2 DD defines the output data set on the system output device (printer
assumed).

v SYSIN DD defines the control data set, which follows in the input stream.

v PRINT begins the print operation, specifies conversion from alphanumeric to
hexadecimal representation, indicates that the input data set is partitioned, and
specifies that 10 records from each member are to be printed.

v TITLE specifies a title to be placed beginning in column 20 of the printed output.
The title is not converted to hexadecimal.

Example 10: Convert to Hexadecimal and Print Partitioned Data
In this example, two partitioned members are printed according to the default
format. The printed output is converted to hexadecimal.

//PRNTMEMS JOB ...
//STEP1 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=BROWN.MAIN.LIB,DISP=SHR
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT TYPORG=PO,TOTCONV=XE,MAXNAME=2
TITLE ITEM=(’PRINT TWO MEMBS WITH CONV TO HEX’,10)
MEMBER NAME=MEMBER1
MEMBER NAME=MEMBER2

/*

The control statements are discussed below:

v SYSUT1 DD defines the input data set, called BROWN.MAIN.LIB, on a disk
volume.

v SYSUT2 DD defines the output data set on the system output device (printer
assumed).

v SYSIN DD defines the control data set, which follows in the input stream.

v PRINT begins the print operation, indicates that the input data set is partitioned,
specifies conversion from alphanumeric to hexadecimal representation, and
indicates that two MEMBER statements appear in the control data set
(MAXNAME=2).

IEBPTPCH

Chapter 9. IEBPTPCH (Print-Punch) Program 215

v TITLE specifies a title to be placed beginning in column 10 of the printed output.
The title is not converted to hexadecimal.

v MEMBER specifies the member names of the members to be printed
(MEMBER1 and MEMBER2).

Example 11: Print Member Containing DBCS Data
In this example, a member of a partitioned data set that contains DBCS data is
printed after the DBCS data is checked to ensure that all DBCS characters are
printable.

//DBCS JOB ...
//STEP1 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP)
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT TYPORG=PO,DBCS=YES,MAXFLDS=1,MAXNAME=1
MEMBER NAME=MEM1
RECORD FIELD=(,,CV)

/*

The control statements are discussed below:

v SYSUT1 DD defines the input data set, PDS, on a disk volume.

v SYSUT2 DD defines the system printer as the output data set.

v SYSIN DD defines the control data set, which follows in the input stream.

v PRINT begins the print operation, indicates that the input data set is partitioned,
and indicates that double-byte character set data will be printed. The statement
also indicates that one MEMBER statement appears in the control data set, and
that one FIELD parameter appears on a subsequent RECORD statement.

v MEMBER specifies the member, MEM1, that is to be printed.

v RECORD specifies that the DBCS data is to be checked to ensure that it is
printable.

IEBPTPCH

216 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 10. IEBUPDTE (Update Data Set) Program

You can use IEBUPDTE to create or modify sequential or partitioned data sets or
PDSEs. However, the program can be used only with data sets containing
fixed-length records of no more than 80 bytes. (It is used primarily for updating
procedure, source, and macro libraries, such as those containing JCL.)

You can use IEBUPDTE to perform the following tasks:

v Incorporate IBM or your source language modifications into sequential or
partitioned data sets, or PDSEs.

v Create and update data set libraries.

v Modify existing sequential data sets or members of partitioned data sets or
PDSEs.

v Change the organization of a data set from sequential to partitioned or PDSE, or
the reverse.

You can also use your own exit routines to process header and trailer labels.

Creating and Updating Data Set Libraries
IEBUPDTE can be used to create a library of partitioned members, if those
members have logical record lengths of 80 or less. In addition, members can be
added directly to an existing library, provided that the original space allocations are
sufficient to incorporate the new members. In this manner, a cataloged procedure
can be placed in a procedure library, or a set of job or utility control statements can
be placed as a member in a partitioned library. These libraries may be either
partitioned data sets or PDSEs.

Modifying an Existing Data Set
IEBUPDTE can be used to modify an existing partitioned or sequential data set, or
PDSE. Logical records can be replaced, deleted, renumbered, or added to the
member or data set.

A sequential data set residing on a tape volume can be used to create a new
master (that is, a modified copy) of the data set. A sequential data set residing on a
direct access device can be modified either by creating a new master or by
modifying the data set directly on the volume on which it resides.

A partitioned data set or PDSE can be modified either by creating a new master or
by modifying the data set directly on the volume on which it resides.

Changing Data Set Organization
IEBUPDTE can be used to change the organization of a data set from sequential to
partitioned or PDSE, or to change a single member of a partitioned data set or
PDSE to a sequential data set. If only a member is changed, the remainder of the
original data set remains unchanged. In addition, logical records can be replaced,
deleted, renumbered, or added to the member or data set.

Input and Output
IEBUPDTE uses the following input:

© Copyright IBM Corp. 1979, 2002 217

v An input data set (also called the old master data set), which is modified or used
as source data for a new master. The input data set is either a sequential data
set or a member of a partitioned data set or PDSE.

v A control data set, which contains utility control statements and, if applicable,
input data. The data set is required for each use of IEBUPDTE.

IEBUPDTE produces the following output:

v An output data set, which is the result of the IEBUPDTE operation. The data set
can be sequential, partitioned, or PDSE. It can be either a new data set (that is,
created during the present job step) or an existing data set, modified during the
present job step.

v A message data set, which contains the utility program identification, control
statements used in the job step, modification made to the input data set, and
diagnostic messages, if applicable. The message data set is sequential.

See Appendix A for IEBUPDTE return codes.

Control
IEBUPDTE is controlled by job and utility control statements. The job control
statements are required to process or load IEBUPDTE and to define the data sets
that are used and produced by the program. The utility control statements are used
to control the functions of IEBUPDTE and, in certain cases, to supply new or
replacement data.

Job Control Statements
Table 36 shows the job control statements for IEBUPDTE.

Table 36. Job Control Statements for IEBUPDTE

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEBUPDTE), or, if the job control
statements reside in a procedure library, the procedure name. Additional
information can be specified in the PARM parameter of the EXEC
statement.

SYSPRINT DD Defines a sequential data set for messages. The data set can be written
to a system output device, a tape volume, or a direct access volume.

SYSUT1 DD Defines the input (old master) data set. It can define a sequential data set
on a card reader, a tape volume, or a direct access volume. It can define
a partitioned data set or PDSE on a direct access volume.

SYSUT2 DD Defines the output data set. It can define a sequential data set on a card
punch, a printer, a tape volume, or a direct access device. It can define a
partitioned data set or PDSE on a direct access volume.

SYSIN DD Defines the control data set. The control data set normally resides in the
input stream; however, it can be defined as a member of a partitioned
data set or PDSE.

EXEC Statement
Additional information can be coded in the PARM parameter of the EXEC
statement, as follows:

//[stepname] EXEC PGM=IEBUPDTE
[,PARM='{NEW|MOD}[,inhdr][,intlr]']

IEBUPDTE

218 z/OS V2R13.0 DFSMSdfp Utilities

where:

PGM=IEBUPDTE
specifies that IEBUPDTE is the program you want to run.

PARM='{NEW|MOD} [,inhdr][,intlr]'
specifies optional information as follows:

NEW
specifies that the input consists solely of the control data set. Do not code a
SYSUT1 DD statement if you specify NEW.

MOD
specifies that the input consists of both the control data set and the input
data set. MOD is the default.

inhdr
specifies the name of the routine that processes the user header labels for
the control data set.

intlr
specifies the name of the routine that processes the user trailer labels for
the control data set.

If only one value is coded in PARM, the single quotes (or parentheses) are
optional.

SYSPRINT DD Statement
The message data set has a logical record length of 121 bytes, and consists of
fixed length, blocked or unblocked records with an American National Standards
Institute (ANSI) control character in the first byte of each record.

SYSUT1 and SYSUT2 DD Statements
If the SYSUT1 and SYSUT2 DD statements define the same sequential data set,
only those operations that add data to the end of the existing data set can be
made. In these cases:

v The PARM parameter of the EXEC statement must imply or specify MOD. (See
“EXEC Statement” on page 218.)

v The DISP parameter of the SYSUT1 DD statement must specify OLD.

If SYSUT1 and SYSUT2 define the same partitioned data set or PDSE, new extents
resulting from updates on SYSUT2 are not retrievable in SYSUT1.

The input and output data sets contain blocked or unblocked logical records with
record lengths of up to 80 bytes. The input and output data sets may have different
block sizes as long as they are multiples of the logical record length. However, if
insufficient space is allocated for reblocked records, the update request is ended.

If an ADD operation is specified with PARM=NEW in the EXEC statement, the
SYSUT1 DD statement need not be coded.

If the SYSUT1 DD statement defines a sequential data set on tape, the file
sequence number of that data set must be included in the LABEL keyword (unless
the data set is the first or only data set on the volume).

If the output data set (SYSUT2) does not already exist and is to reside on a direct
access device, space must be allocated for it. The SYSUT2 DD statement must not
specify a DUMMY data set.

IEBUPDTE

Chapter 10. IEBUPDTE (Update Data Set) Program 219

When adding a member to an existing partitioned data set or PDSE using an ADD
function statement, any DCB parameters specified on the SYSUT1 and SYSUT2
DD statements (or the SYSUT2 DD statement if that is the only one specified) must
be the same as the DCB parameters already existing for the data set.

If an UPDATE=INPLACE operation is specified, the SYSUT2 DD statement should
not be coded.

If both the SYSUT1 and SYSUT2 DD statements specify standard user labels
(SUL), IEBUPDTE copies user labels from SYSUT1 to SYSUT2.

If the SYSUT1 and SYSUT2 DD statements define the same partitioned data set or
PDSE, the old master data set can be updated without creating a new master data
set; in this case, a copy of the updated member or members is written within the
extent of the space originally allocated to the old master data set. Subsequent
referrals to the updated members will point to the newly written members. The
member names themselves should not appear on the DD statements; they should
be referred to only through IEBUPDTE control statements. The old directory entry
for each member is not copied.

SYSIN DD Statement
The SYSIN DD statement is required for each use of IEBUPDTE. The control data
set contains 80-byte, blocked or unblocked records.

Utility Control Statements
Table 37 shows the utility control statements used to control IEBUPDTE.

Table 37. IEBUPDTE Utility Control Statements

Statement Use

Function Begins an IEBUPDTE operation (ADD, CHANGE, REPL, REPRO).

Detail Used with the function statement for special applications.

Data A logical record of data to be used as a new or replacement record in the
output data set.

LABEL Indicates that the following data statements are to be treated as user
labels.

ALIAS Assigns aliases.

ENDUP Stops IEBUPDTE.

Requirement: Unlike other utility control statements, all IEBUPDTE utility control
statements (not including data statements) must begin with a “./” (period, slash) in
columns 1 and 2.

Continuation requirements for utility control statements are described in “Continuing
Utility Control Statements” on page 8.

Function Statement
The function statement (ADD, CHANGE, REPL, or REPRO) is used to begin an
IEBUPDTE operation. At least one function statement must be provided for each
member or data set to be processed.

A member or a data set can be added directly to an old master data set if the
space originally allocated to the old master is sufficient to incorporate that new
member or data set. ADD specifies that a member or a data set is added to an old

IEBUPDTE

220 z/OS V2R13.0 DFSMSdfp Utilities

master data set. If a member is added and the member name already exists in the
old master data set, processing is ended. If, however, PARM=NEW is specified on
the EXEC statement, the member is replaced. For a sequential output master data
set, PARM=NEW must always be specified on the EXEC statement.

When a member replaces an identically named member on the old master data set
or a member is changed and rewritten on the old master, the alias (if any) of the
original member still refers to the original member. However, if an identical alias is
specified for the newly written member, the original alias entry in the directory is
changed to refer to the newly written member.

REPL specifies that a member of a data set is being entered in its entirety as a
replacement for a sequential data set or for a member of the old master data set.
The member name must already exist in the old master data set. CHANGE
specifies that modifications are to be made to an existing member or data set. Use
of the CHANGE function statement without a NUMBER or DELETE detail
statement, or a data statement causes an error condition. REPRO specifies that a
member or a data set is copied in its entirety to a new master data set.

Members are logically deleted from a copy of a library by being omitted from a
series of REPRO function statements within the same job step.

One sequential data set can be copied in a given job step. A sequential data set is
logically deleted from a new volume by being omitted from a series of job steps
which copy only the desired data sets to the new volume. If the NEW subparameter
is coded in the EXEC statement, only the ADD function statement is permitted.

The syntax of the FUNCTION statement is:

./[label] {ADD|CHANGE|
REPL|REPRO}

[LIST=ALL]
[,SEQFLD={ddl|(ddl,ddl)}]
[,NEW={PO|PS}]
[,MEMBER=membername]
[,COLUMN={nn|1}]
[,UPDATE=INPLACE]
[,INHDR=routinename]
[,INTLR=routinename]
[,OUTHDR=routinename]
[,OUTTLR=routinename]
[,TOTAL=(routinename,size)]
[,NAME=membername]
[,LEVEL=hh]
[,SOURCE=x]
[,SSI=hhhhhhhh]

Note: COLUMN and UPDATE=INPLACE can only be used with CHANGE

where:

LIST=ALL
specifies that the SYSPRINT data set is to contain the entire updated member
or data set and the control statements used in its creation.

Default: For old data sets, if LIST is omitted, the SYSPRINT data set contains
modifications and control statements only. If UPDATE was specified, the entire
updated member is listed only when renumbering has been done. For new data

IEBUPDTE

Chapter 10. IEBUPDTE (Update Data Set) Program 221

sets, the entire member or data set and the control statements used in its
creation are always written to the SYSPRINT data set.

SEQFLD={ddl|(ddl,ddl)}
ddl specifies, in decimal, the starting column (up to column 80) and length (8 or
less) of sequence numbers within existing logical records and subsequent data
statements. Note that the starting column specification (dd) plus the length (l)
cannot exceed the logical record length (LRECL) plus 1. Sequence numbers on
incoming data statements and existing logical records must be padded to the
left with enough zeros to fill the length of the sequence field.

(ddl,ddl)
may be used when an alphanumeric sequence number generation is
required. The first ddl specifies the sequence number columns as above.
The second ddl specifies, in decimal, the starting column (up to column 80)
and length (8 or less) of the numeric portion of the sequence numbers in
subsequent NUMBER statements. This information is used to determine
which portion of the sequence number specified by the NEW1 parameter
may be increased and which portions should be copied to generate a new
sequence number for inserted or renumbered records.

The numeric columns must fall within the sequence number columns
specified (or defaulted) by the first ddl.

Default: 738 is assumed, that is, an 8-byte sequence number beginning in
column 73. Therefore, if existing logical records and subsequent data
statements have sequence numbers in columns 73 through 80, this keyword
need not be coded.

NEW={PO|PS}
specifies the organization of the old master data set and the organization of the
updated output. NEW should not be specified unless the organization of the
new master data set is different from the organization of the old master. NEW
can only be coded on the first control record. Refer to Table 38 on page 225 for
the use of NEW with NAME and MEMBER. These values can be coded:

PO
specifies that the old master data set is a sequential data set, and that the
updated output is to become a member of a partitioned data set or PDSE.

PS
specifies that the old master data set is a partitioned data set or PDSE, and
that a member of that data set is to be converted into a sequential data set.

MEMBER=membername
specifies a name to be assigned to the member placed in the partitioned data
set or PDSE defined by the SYSUT2 DD statement. MEMBER is used only
when SYSUT1 defines a sequential data set, SYSUT2 defines a partitioned
data set or PDSE, and NEW=PO is specified. Refer to Table 38 on page 225 for
the use of MEMBER with NEW.

COLUMN={nn|1}
specifies, in decimal, the starting column of a data field within a logical record.
The field extends to the end of the logical record. Within an existing logical
record, the data in the defined field is replaced by data from a subsequent data
statement. See “Function Restrictions” on page 224 for restrictions on
COLUMN.

COLUMN may only be coded with CHANGE.

IEBUPDTE

222 z/OS V2R13.0 DFSMSdfp Utilities

UPDATE=INPLACE
specifies that the old master data set is to be updated within the space it
actually occupies. The old master data set must reside on a direct access
device. UPDATE=INPLACE is valid only when coded with CHANGE. No other
function statements (ADD, REPL, REPRO) may be in the same job step. See
“Function Restrictions” on page 224 for restrictions on using
UPDATE=INPLACE.

INHDR=routinename
specifies the name of the user routine that handles any user input (SYSUT1)
header labels. This parameter is valid only when a sequential data set is being
processed. See Table 7 on page 15 for information on updating user input
header labels.

INTLR=routinename
specifies the name of the user routine that handles any user input (SYSUT1)
trailer labels. INTLR is valid only when a sequential data set is being
processed, but not when UPDATE=INPLACE is coded.

OUTHDR=routinename
specifies the name of the user routine that handles any user output (SYSUT2)
header labels. OUTHDR is valid only when a sequential data set is being
processed, but not when UPDATE=INPLACE is coded.

OUTTLR=routinename
specifies the name of the user routine that handles any user output (SYSUT2)
trailer labels. OUTTLR is valid only when a sequential data set is being
processed, but not when UPDATE=INPLACE is coded.

TOTAL=(routinename,size)
specifies that exits to a user’s routine are to be provided prior to writing each
record. This parameter is valid only when a sequential data set is being
processed. These values are coded:

routinename
specifies the name of your totaling routine.

size
specifies the number of bytes required for your data. The size should not
exceed 32K, nor be less than 2 bytes. In addition, the keyword OPTCD=T
must be specified for the SYSUT2 (output) DD statement.

Refer to Appendix C, “Specifying User Exits with Utility Programs” on
page 341 for a discussion of linkage conventions for user routines.

NAME=membername
indicates the name of the member placed into the partitioned data set or PDSE.
The member name need not be specified in the DD statement itself. NAME
must be provided to identify each input member. Do not specify NAME if the
input is a sequential data set. Refer to Table 38 on page 225 for the use of
NAME. This parameter is valid only when a member of a partitioned data set or
PDSE is being processed.

LEVEL=hh
specifies the change (update) level in hexadecimal (00-FF). The level number is
recorded in the directory entry of the output member. This parameter is valid
only when a member of a partitioned data set or PDSE is being processed.
LEVEL has no effect when SSI is specified.

SOURCE=x
specifies your modifications when the x value is 0, or IBM modifications when

IEBUPDTE

Chapter 10. IEBUPDTE (Update Data Set) Program 223

the x value is 1. The source is recorded in the directory entry of the output
member. This parameter is valid only when a member of a partitioned data set
or PDSE is being processed. SOURCE has no effect when SSI is specified.

SSI=hhhhhhhh
specifies eight hexadecimal characters of system status information (SSI) to be
placed in the directory of the new master data set as four packed decimal bytes
of user data. This parameter is valid only when a member of a partitioned data
set or PDSE is being processed. SSI overrides any LEVEL or SOURCE
parameter given on the same function statement.

Function Restrictions
When UPDATE=INPLACE is specified:

v The SYSUT2 DD statement is not coded.

v The PARM parameter of the EXEC statement must imply or specify MOD.

v The NUMBER detail statement can be used to specify a renumbering operation.

v Data statements can be used to specify replacement information only.

v One CHANGE function statement and one UPDATE=INPLACE parameter are
permitted per job step.

v No functions other than replacement, renumbering, and header label modification
(via the LABEL statement) can be specified.

v Unless the entire data set is renumbered, only replaced records are listed.

v System status information cannot be changed.

When REPRO is specified, the ADD statement can be used in the same job step
only if both SYSUT1 and SYSUT2 are partitioned data sets or PDSEs; otherwise,
unpredictable results can occur.

Within an existing logical record, the data in the field defined by the COLUMN
parameter is replaced by data from a subsequent data statement, as follows:

1. IEBUPDTE matches a sequence number of a data statement with a sequence
number of an existing logical record. In this manner, the COLUMN specification
is applied to a specific logical record.

2. The information in the field within the data statement replaces the information in
the field within the existing logical record. For example, COLUMN=40 indicates
that columns 40 through 80 (assuming 80-byte logical records) of a subsequent
data statement are to be used as replacement data for columns 40 through 80
of a logical record identified by a matching sequence number. (A sequence
number in an existing logical record or data statement need not be within the
defined field.)

The COLUMN specification applies to the entire function, with the exception of:

v Logical records deleted by a subsequent DELETE detail statement.

v Subsequent data statements not having a matching sequence number for an
existing logical record.

v Data statements containing information to be inserted in the place of a deleted
logical record or records.

Table 38 on page 225 shows the use of NEW, MEMBER, and NAME parameters for
different input and output data set organizations.

IEBUPDTE

224 z/OS V2R13.0 DFSMSdfp Utilities

Table 38. NEW, MEMBER and NAME Parameters of the Function Statements

Input Data Set
Organization

Output Data Set
Organization

Parameter Combinations

None Partitioned or
PDSE (New)

With each ADD function statement, use NAME to assign a name for each
member to be placed in the data set.

Partitioned or
PDSE

Partitioned or
PDSE

With an ADD function statement, use NAME to specify the name of the
member to be placed in the data set defined by the SYSUT2 DD statement.
If an additional name is required, an ALIAS statement can also be used.

With a CHANGE, REPL, or REPRO function statement, use NAME to
specify the name of the member within the data set defined by the SYSUT1
DD statement. If a different or additional name is desired for the member in
the data set defined by the SYSUT2 DD statement, use an ALIAS
statement also.

Partitioned or
PDSE

Sequential With any function statement, use NAME to specify the name of the member
in the data set defined by the SYSUT1 DD statement. Use NEW=PS to
specify the change in organization from partitioned to sequential. (The
name and file sequence number, if any, assigned to the output master data
set are specified in the SYSUT2 DD statement.)

Sequential Partitioned or
PDSE

With applicable function statement, use MEMBER to assign a name to the
member to be placed in the data set defined by the SYSUT2 DD statement.
Use NEW=PO to specify the change in organization from sequential to
partitioned.

Detail Statement
A detail statement is used with a function statement for certain applications, such as
deleting or renumbering selected logical records. The NUMBER detail statement
specifies, when coded with a CHANGE function statement, that the sequence
number of one or more logical records is changed. It specifies, when coded with an
ADD or REPL function statement, the sequence numbers to be assigned to the
records within new or replacement members or data sets. When used with an ADD
or REPL function statement, no more than one NUMBER detail statement is
permitted for each ADD or REPL function statement.

The DELETE detail statement specifies, when coded with a CHANGE function
statement, that one or more logical records are to be deleted from a member or
data set.

Logical records cannot be deleted in part; that is, a COLUMN parameter
specification in a function statement is not applicable to records that are to be
deleted. Each specific sequence number is handled only once in any single
operation.

The syntax of the DETAIL statement is:

./[label] {NUMBER|
DELETE}

[SEQ1={cccccccc|ALL}]
[,SEQ2=cccccccc]
[,NEW1=cccccccc]
[,INCR=cccccccc]
[,INSERT=YES]

Note: NEW1, INCR and INSERT can only be used with NUMBER

where:

IEBUPDTE

Chapter 10. IEBUPDTE (Update Data Set) Program 225

SEQ1={cccccccc|ALL}
specifies records to be renumbered, deleted, or assigned sequence numbers.
These values can be coded:

cccccccc
specifies the sequence number of the first logical record to be renumbered
or deleted. This value is not coded in a NUMBER detail statement that is
used with an ADD or REPL function statement. When this value is used in
an insert operation, it specifies the existing logical record after which an
insertion is to be made. It must not equal the number of a statement just
replaced or added. Refer to the INSERT parameter for additional
discussion.

ALL
specifies a renumbering operation for the entire member or data set. ALL is
used only when a CHANGE function statement and a NUMBER detail
statement are used. ALL must be coded if sequence numbers are to be
assigned to existing logical records having blank sequence numbers. If ALL
is not coded, all existing logical records having blank sequence numbers
are copied directly to the output master data set. When ALL is coded, SEQ2
need not be coded and one NUMBER detail statement is permitted per
function statement. Refer to the INSERT parameter for additional
discussion.

SEQ2=cccccccc
specifies the sequence number of the last logical record to be renumbered or
deleted. SEQ2 is required on all DELETE detail statements. If only one record
is to be deleted, the SEQ1 and SEQ2 specifications must be identical. SEQ2 is
not coded in a NUMBER detail statement that is used with an ADD or REPL
function statement.

NEW1=cccccccc
specifies the first sequence number assigned to new or replacement data, or
specifies the first sequence number assigned in a renumbering operation. A
value specified in NEW1 must be greater than a value specified in SEQ1
(unless SEQ1=ALL is specified, in which case this rule does not apply).

INCR=cccccccc
specifies an increment value used for assigning successive sequence numbers
to new or replacement logical records, or specifies an increment value used for
renumbering existing logical records.

INSERT=YES
specifies the insertion of a block of logical records. The records, which are data
statements containing blank sequence numbers, are numbered and inserted in
the output master data set. INSERT is valid only when coded with both a
CHANGE function statement and a NUMBER detail statement. SEQ1, NEW1
and INCR are required on the first NUMBER detail statement.

When INSERT=YES is coded:

v The SEQ1 parameter specifies the existing logical record after which the
insertion is made. SEQ1=ALL cannot be coded.

v The SEQ2 parameter need not be coded.

v The NEW1 parameter assigns a sequence number to the first logical record to be
inserted. If the parameter is alphanumeric, the SEQFLD=(ddl,ddl) parameter
should be coded on the function statement.

v The INCR parameter is used to renumber as much as is necessary of the
member or data set from the point of the first insertion; the member or data set is

IEBUPDTE

226 z/OS V2R13.0 DFSMSdfp Utilities

renumbered until an existing logical record is found whose sequence number is
equal to or greater than the next sequence number to be assigned. If no such
logical record is found, the entire member or data set is renumbered.

v Additional NUMBER detail statements, if any, must specify INSERT=YES. If a
prior numbering operation renumbers the logical record specified in the SEQ1
parameter of a subsequent NUMBER detail statement, any NEW1 or INCR
parameter specifications in the latter NUMBER detail statement are overridden.
The prior increment value is used to assign the next successive sequence
numbers. If a prior numbering operation does not renumber the logical record
specified in the SEQ1 parameter of a subsequent NUMBER detail statement, the
latter statement must contain NEW1 and INCR specifications.

v The block of data statements to be inserted must contain blank sequence
numbers.

v The insert operation is stopped when a function statement, a detail statement, an
end-of-file indication, or a data statement containing a sequence number is
encountered.

Detail Restrictions
The SEQ1, SEQ2 and NEW1 parameters (with the exception of SEQ1=ALL) specify
eight (maximum) alphanumeric characters. The INCR parameter specifies eight
(maximum) numeric characters. Only the significant part of a numeric sequence
number need be coded; for example, SEQ1=00000010 can be shortened to
SEQ1=10. If, however, the numbers are alphanumeric, the alphabetic characters
must be specified; for example, SEQ1=00ABC010 can be shortened to
SEQ1=ABC010.

Data Statement
A data statement is used with a function statement, or with a function statement and
a detail statement. It contains a logical record used as replacement data for an
existing logical record, or new data to be incorporated in the output master data set.

Each data statement contains one logical record, which begins in the first column of
the data statement. The length of the logical record is equal to the logical record
length (LRECL) specified for the output master data set. Each logical record
contains a sequence number to determine where the data is placed in the output
master data set (except when INSERT=YES is specified on a NUMBER statement).

When used with a CHANGE function statement, a data statement contains new or
replacement data, as follows:

v If the sequence number in the data statement is identical to a sequence number
in an existing logical record, the data statement replaces the existing logical
record in the output master data set.

v If no corresponding sequence number is found within the existing records, the
data statement is inserted in the proper collating sequence within the output
master data set. (For proper execution of this function, all records in the old
master data set must have a sequence number.)

v If a data statement with a sequence number is used and INSERT=YES was
specified, the insert operation is stopped. IEBUPDTE will continue processing if
this sequence number is at least equal to the next old master record (record
following the referred to sequence record).

When used with an ADD or REPL function statement, a data statement contains
new data to be placed in the output master data set.

IEBUPDTE

Chapter 10. IEBUPDTE (Update Data Set) Program 227

Sequence numbers within the old master data set are assumed to be in ascending
order. No validity checking of sequence numbers is performed for data statements
or existing records.

Sequence numbers in data statements must be in the same relative position as
sequence numbers in existing logical records. (Sequence numbers include leading
zeros and are assumed to be in columns 73 through 80; if the numbers are in
columns other than these, the length and relative position must be specified in a
SEQFLD parameter within a preceding function statement.)

LABEL Statement
The LABEL statement indicates that the following data statements (called label data
statements) are to be treated as user labels. These new user labels are placed on
the output data set. The next control statement indicates to IEBUPDTE that the last
label data statement of the group has been read.

The syntax of the LABEL statement is:

./[name] LABEL

There can be no more than two LABEL statements per execution of IEBUPDTE.
There can be no more than eight label data statements following any LABEL
statement. The first 4 bytes of each 80-byte label data statement must contain
“UHLn” or “UTLn”, where n is 1 through 8, for input header or input trailer labels
respectively, to conform to IBM standards for user labels. Otherwise, data
management will overlay the data with the proper four characters.

When IEBUPDTE encounters a LABEL statement, it reads up to eight data
statements and saves them for processing by user output label routines. If there are
no such routines, the saved records are written by OPEN or CLOSE as user labels
on the output data set. If there are user output label processing routines,
IEBUPDTE passes a parameter list to the output label routines. (See Appendix C,
“Specifying User Exits with Utility Programs” on page 341.) The label buffer contains
a label data record which the user routine can process before the record is written
as a label. If the user routine specifies (via return codes to IEBUPDTE) more
entries than there are label data records, the label buffer will contain meaningless
information for the remaining entries to the user routine.

The position of the LABEL statement in the SYSIN data set, relative to any function
statements, indicates the type of user label that follows the LABEL statement:

v To create output header labels, place the LABEL statement and its associated
label data statements before any function statements in the input stream. A
function statement, other than LABEL, must follow the last label data statement
of the group.

v To create output trailer labels, place the LABEL statement and its associated
label data statements after any function statements in the input stream, but
before the ENDUP statement. The ENDUP statement is not optional in this case.
It must follow the last label data statement of the group if IEBUPDTE is to create
output trailer labels.

When UPDATE=INPLACE is specified in a CHANGE statement, user input header
labels can be updated by user routines, but input trailer and output labels cannot be
updated by user routines. User labels cannot be added or deleted. User input
header labels are made available to user routines by the label buffer address in the
parameter list. (See “Processing User Labels” on page 345 for further discussion of

IEBUPDTE

228 z/OS V2R13.0 DFSMSdfp Utilities

the linkage between utility programs and user label processing routines.) The return
codes when CHANGE UPDATE=INPLACE is used differ slightly from the standard
return codes. See Appendix C, “Specifying User Exits with Utility Programs” on
page 341 for the appropriate return codes.

If you want to examine the replaced labels from the old master data set, you must:

1. Specify an update of the old master by coding the UPDATE=INPLACE
parameter in a function statement.

2. Include a LABEL statement in the input data set for either header or trailer
labels.

3. Specify a corresponding user label routine.

If the above conditions are met, fourth and fifth parameter words will be added to
the standard parameter list. The fourth parameter word is not now used; the fifth
contains a pointer to the replaced label from the old master. In this case, the
number of labels supplied in the SYSIN data set must not exceed the number of
labels on the old master data set. If you specify, via return codes, more entries to
the user’s header label routine than there are labels in the input stream, the first
parameter will point to the current header label on the old master data set for the
remaining entries. In this case, the fifth parameter is meaningless.

ALIAS Statement
The ALIAS statement is used to create or retain an alias in an output (partitioned or
PDSE) directory. The ALIAS statement can be used with any of the function
statements. Multiple aliases can be assigned to each member, up to a maximum of
16 aliases.

If an ALIAS statement specifies a name that already exists on the data set, the
original TTR (track record) of that directory entry will be destroyed.

If ALIAS statements are used, they must follow the data statements, if any, in the
input stream.

The syntax of the ALIAS statement is:

./[label] ALIAS NAME=aliasname

where:

NAME=aliasname
specifies a 1- to 8-character alias name.

ENDUP Statement
An ENDUP statement is optional. It is used to indicate the end of SYSIN input to
this job step. If there is no other preceding delimiter statement, it serves as an
end-of-data indication. The ENDUP statement follows the last group of SYSIN
control statements.

When the ENDUP statement is used, it must follow the last label data statement if
IEBUPDTE is used to create output trailer labels.

The syntax of the ENDUP statement is:

./[label] ENDUP

IEBUPDTE

Chapter 10. IEBUPDTE (Update Data Set) Program 229

IEBUPDTE Examples
The following examples illustrate some of the uses of IEBUPDTE. Table 39 can be
used as a quick-reference guide to IEBUPDTE examples. The numbers in the
“Example” column point to examples that follow.

Table 39. IEBUPDTE Example Directory

Operation Data Set
Organization

Device Comments Example

ADD and REPL Partitioned Disk A JCL procedure is stored as a new
member of a procedure library
(PROCLIB). Another JCL procedure is
to replace an existing member in
PROCLIB.

1

COPY Sequential Disk Sequential data set is copied from one
direct access volume to another; user
labels can be processed by exit
routines.

10

CREATE Partitioned Disk Create a new generation. 11

CREATE Sequential Card Reader
and Disk

Sequential data set with user labels is
created from card input.

9

CREATE a
partitioned data
set

Partitioned Disk Input from control data set and from
existing partitioned data set. Output
partitioned data set is to contain three
members.

3

CREATE a
partitioned library

Partitioned Disk Input data is in the control data set.
Output partitioned data set is to contain
three members.

2

CREATE and
DELETE

Partitioned, Sequential Disk and Tape Sequential master is created from
partitioned disk input. Selected records
are to be deleted. Blocked output.

5

CREATE,
DELETE, and
UPDATE

Sequential, Partitioned Tape and Disk Partitioned data set is created from
sequential input. Records are to be
deleted and updated. Sequence
numbers in columns other than 73
through 80. One member is placed in
the output data set.

6

INSERT Partitioned Disk Block of logical records is inserted into
an existing member.

7

INSERT Partitioned Disk Two blocks of logical records are to be
inserted into an existing member.
Sequence numbers are alphanumeric.

8

UPDATE
INPLACE and
renumber

Partitioned Disk Input data set is considered to be the
output data set as well; therefore, no
SYSUT2 DD statement is required.

4

Examples that use disk or tape in place of actual device numbers must be
changed before use. The actual device numbers depend on how your installation
has defined the devices to your system.

IEBUPDTE

230 z/OS V2R13.0 DFSMSdfp Utilities

Example 1: Place Two Procedures in SYS1.PROCLIB
In this example, two procedures are to be placed in the cataloged procedure library,
SYS1.PROCLIB. The example assumes that the two procedures can be
accommodated within the space originally allocated to the procedure library.

//UPDATE JOB ...
//STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SYS1.PROCLIB,DISP=OLD
//SYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=OLD
//SYSIN DD DATA
./ ADD LIST=ALL,NAME=ERASE,LEVEL=01,SOURCE=0
./ NUMBER NEW1=10,INCR=10
//ERASE EXEC PGM=IEBUPDTE
//DD1 DD UNIT=disk,DISP=(OLD,KEEP),VOLUME=SER=111111
//SYSPRINT DD SYSOUT=A
./ REPL LIST=ALL,NAME=LISTPROC
./ NUMBER NEW1=10,INCR=10
//LIST EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=SHR,DSN=SYS1.PROCLIB(&MEMBER)
//SYSUT2 DD SYSOUT=A,DCB=(RECFM=F,BLKSIZE=80)
//SYSIN DD DATA
./ ENDUP
/*

The control statements are discussed below:

v SYSUT1 and SYSUT2 DD define the SYS1.PROCLIB data set, which is
assumed to be cataloged.

v SYSIN DD defines the control data set, which follows in the input stream. The
data set contains the utility control statements and the data to be placed in the
procedure library.

v The ADD function statement indicates that records (data statements) in the
control data set are to be placed in the output. The newly created procedure,
ERASE, is listed in the message data set.

The ADD function will not take place if a member named ERASE already exists
in the new master data set referenced by SYSUT2.

v The first NUMBER detail statement indicates that the new and replacement
procedures are to be assigned sequence numbers. The first record of each
procedure is assigned sequence number 10; the next record is assigned
sequence number 20, and so on.

v The ERASE EXEC statement marks the beginning of the first new procedure.

v The REPL function statement indicates that records (data statements) in the
control data set are to replace an already existing member. The member is
stored in the new master data set referenced by SYSUT2. The REPL function will
only take place if a member named LISTPROC already exists in the old master
data set referenced by SYSUT1.

v The second NUMBER detail statement is a duplicate of the first.

v The LIST EXEC statement marks the beginning of the second new procedure.

v The ENDUP statement marks the end of the SYSIN DD input data.

Example 2: Create a Three-Member Library
In this example, a three-member partitioned library is created. The input data is
contained solely in the control data set.

//UPDATE JOB ...
//STEP1 EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A

IEBUPDTE

Chapter 10. IEBUPDTE (Update Data Set) Program 231

//SYSUT2 DD DSNAME=OUTLIB,UNIT=disk,DISP=(NEW,CATLG),
// VOLUME=SER=111112,SPACE=(TRK,(50,,10)),
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DATA
./ ADD NAME=MEMB1,LEVEL=00,SOURCE=0,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

./ ADD NAME=MEMB2,LEVEL=00,SOURCE=0,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

./ ADD NAME=MEMB3,LEVEL=00,SOURCE=0,LIST=ALL

(Data statements, sequence numbers in columns 73 through 80)

./ ENDUP
/*

The control statements are discussed below:

v SYSUT2 DD defines the new partitioned master, OUTLIB. Enough space is
allocated to allow for subsequent modifications without creating a new master
data set.

v SYSIN DD defines the control data set, which follows in the input stream. The
data set contains the utility control statements and the data to be placed as three
members in the output partitioned data set.

v The ADD function statements indicate that subsequent data statements are to be
placed as members in the output partitioned data set. Each ADD function
statement specifies a member name for subsequent data and indicates that the
member and control statement is listed in the message data set.

v The data statements contain the data to be placed in each member of the output
partitioned data set.

v ENDUP signals the end of control data set input.

Because sequence numbers (other than blank numbers) are included within the
data statements, no NUMBER detail statements are included in the example.

Example 3: Create New Library Using SYS1.MACLIB as a Source
In this example, a three-member partitioned data set (NEWMCLIB) is created. The
data set will contain two members, ATTACH and DETACH, copied from an existing
partitioned data set (SYS1.MACLIB), and a new member, EXIT, which is contained
in the control data set.

//UPDATE JOB ...
//STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SYS1.MACLIB,DISP=SHR
//SYSUT2 DD DSNAME=DEV.DRIVER3.NEWMCLIB,UNIT=disk,
// DISP=(NEW,CATLG),SPACE=(TRK,(100,,10)),
// DCB=(RECFM=F,LRECL=80,BLKSIZE=4000)
//SYSIN DD DATA
./ REPRO NAME=ATTACH,LEVEL=00,SOURCE=1,LIST=ALL
./ REPRO NAME=DETACH,LEVEL=00,SOURCE=1,LIST=ALL
./ ADD NAME=EXIT,LEVEL=00,SOURCE=1,LIST=ALL
./ NUMBER NEW1=10,INCR=100

(Data records for EXIT member)

./ ENDUP
/*

IEBUPDTE

232 z/OS V2R13.0 DFSMSdfp Utilities

The control statements are discussed below:

v SYSUT1 DD defines the input partitioned data set SYS1.MACLIB, which is
assumed to be cataloged.

v SYSUT2 DD defines the output partitioned data set DEV.DRIVER3,NEWMCLIB.
Enough space is allocated to allow for subsequent modifications without creating
a new master data set.

v SYSIN DD defines the control data set, which follows in the input stream.

v The REPRO function statements identify the existing input members (ATTACH
and DETACH) to be copied onto the output data set. These members are also
listed in the message data set (because LIST=ALL is specified).

v The ADD function statement indicates that records (subsequent data statements)
are to be placed as members in the output partitioned data set, called EXIT. The
data statements are to be listed in the message data set.

v The NUMBER detail statement assigns sequence numbers to the data
statements. (The data statements contain blank sequence numbers in columns
73 through 80.) The first record of the output member is assigned sequence
number 10; subsequent record numbers are increased by 100.

v ENDUP signals the end of SYSIN data.

Note that the three named input members (ATTACH, DETACH, and EXIT) do not
have to be specified in the order of their collating sequence in the old master.

Example 4: Update a Library Member
In this example, a member (MODMEMB) is updated within the space it actually
occupies. Two existing logical records are replaced, and the entire member is
renumbered.

//UPDATE JOB ...
//STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
// VOLUME=SER=111112
//SYSIN DD *
./ CHANGE NAME=MODMEMB,LIST=ALL,UPDATE=INPLACE
./ NUMBER SEQ1=ALL,NEW1=10,INCR=5

(Data statement 1, sequence number 00000020)
(Data statement 2, sequence number 00000035)

/*

The control statements are discussed below:

v SYSUT1 DD defines the partitioned data set that is updated in place. (Note that
the member name need not be specified in the DD statement.)

v SYSIN DD defines the control data set, which follows in the input stream.

v The CHANGE function statement indicates the name of the member to be
updated (MODMEMB) and specifies the UPDATE=INPLACE operation. The
entire member is listed in the message data set. Note that, as renumbering is
being done, and since UPDATE=INPLACE was specified, the listing would have
been provided even if the LIST=ALL parameter had not been specified. See the
LIST parameter for more information.

v The NUMBER detail statement indicates that the entire member is to be
renumbered, and specifies the first sequence number to be assigned and the
increment value (5) for successive sequence numbers.

IEBUPDTE

Chapter 10. IEBUPDTE (Update Data Set) Program 233

v The data statements replace existing logical records having sequence numbers
of 20 and 35.

Example 5: Create New Master Data Set and Delete Selected Records
In this example, a new master sequential data set is created from partitioned input
and selected logical records are deleted.

//UPDATE JOB ...
//STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=DCB.PARTDS,DISP=(OLD,KEEP)
// VOLUME=SER=111112
//SYSUT2 DD DSNAME=SEQDS,UNIT=tape,LABEL=(2,SL),
// DISP=(,KEEP),VOLUME=SER=001234,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
//SYSIN DD *
./ CHANGE NEW=PS,NAME=OLDMEMB1

(Data statement 1, sequence number 00000123)

./ DELETE SEQ1=223,SEQ2=246

(Data statement 2, sequence number 00000224)

/*

The control statements are discussed below:

v SYSUT1 DD defines the input partitioned data set DCB.PARTDS, which resides
on a disk volume.

v SYSUT2 DD defines the output sequential data set, SEQDS. The data set is
written as the second data set on a tape volume.

v SYSIN DD defines the control data set, which follows in the input stream.

v CHANGE identifies the input member (OLDMEMB1) and indicates that the output
is a sequential data set (NEW=PS).

v The first data statement replaces the logical record whose sequence number is
identical to the sequence number in the data statement (00000123). If no such
logical record exists, the data statement is incorporated in the proper sequence
within the output data set.

v The DELETE detail statement deletes logical records having sequence numbers
from 223 through 246, inclusive.

v The second data statement is inserted in the proper sequence in the output data
set, because no logical record with the sequence number 224 exists (it was
deleted in the previous statement).

Note that only one member can be used as input when converting to sequential
organization.

Example 6: Create and Update a Library Member
In this example, a member of a partitioned data set is created from sequential input
and existing logical records are updated.

//UPDATE JOB ...
//STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=BROWN.OLDSEQDS,UNIT=tape,
// DISP=(OLD,KEEP),VOLUME=SER=001234
//SYSUT2 DD DSNAME=BROWN.NEWPART,UNIT=disk,DISP=(,CATLG),
// VOLUME=SER=111112,SPACE=(TRK,(10,5,5)),

IEBUPDTE

234 z/OS V2R13.0 DFSMSdfp Utilities

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=4080)
//SYSIN DD *
./ CHANGE NEW=PO,MEMBER=PARMEM1,LEVEL=01,
./ SEQFLD=605,COLUMN=40,SOURCE=0

(Data statement 1, sequence number 00020)

./ DELETE SEQ1=220,SEQ2=250

(Data statement 2, sequence number 00230)
(Data statement 3, sequence number 00260)

./ ALIAS NAME=MEMB1
/*

The control statements are discussed below:

v SYSUT1 DD defines the input sequential data set (BROWN.OLDSEQDS). The
data set resides on a tape volume.

v SYSUT2 DD defines the output partitioned data set (BROWN.NEWPART).
Enough space is allocated to provide for members that may be added in the
future.

v SYSIN DD defines the control data set, which follows in the input stream.

v The CHANGE function statement identifies the output member (PARMEM1) and
indicates that a conversion from sequential input to partitioned output is made.
The SEQFLD parameter indicates that a 5-byte sequence number is located in
columns 60 through 64 of each data statement. The COLUMN=40 parameter
specifies the starting column of a field (within subsequent data statements) from
which replacement information is obtained. SOURCE=0 indicates that the
replacement information is provided by you.

v The first data statement is used as replacement data. Columns 40 through 80 of
the statement replace columns 40 through 80 of the corresponding logical record.
If no such logical record exists, the entire card image is inserted in the output
data set member.

v The DELETE detail statement deletes all of the logical records having sequence
numbers from 220 through 250.

v The second data statement, whose sequence number falls within the range
specified in the DELETE detail statement above, is incorporated in its entirety in
the output data set member.

v The third data statement, which is beyond the range of the DELETE detail
statement, is treated in the same manner as the first data statement.

v ALIAS assigns the alias name MEMB1 to the output data set member
PARMEM1.

Example 7: Insert Records into a Library Member
In this example, a block of three logical records is inserted into an existing member,
and the updated member is placed in the existing partitioned data set.

//UPDATE JOB ...
//STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
// VOLUME=SER=111112
//SYSUT2 DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
// VOLUME=SER=111112
//SYSIN DD *
./ CHANGE NAME=RENUM,LIST=ALL,LEVEL=01,SOURCE=0
./ NUMBER SEQ1=15,NEW1=20,INCR=5,INSERT=YES

IEBUPDTE

Chapter 10. IEBUPDTE (Update Data Set) Program 235

(Data statement 1)
(Data statement 2)
(Data statement 3)

/*

The control statements are discussed below:

v SYSUT1 and SYSUT2 DD define the partitioned data set (PDS).

v SYSIN DD defines the control data set, which follows in the input stream.

v The CHANGE function statement identifies the input member RENUM. The entire
member is listed in the message data set.

v The NUMBER detail statement specifies the insert operation and controls the
renumbering operation as described below.

v The data statements are the logical records to be inserted. (Sequence numbers
are assigned when the data statements are inserted.)

In this example, the existing logical records have sequence numbers 10, 15, 20, 25,
and 30. Sequence numbers are assigned by the NUMBER detail statement, as
follows:

1. Data statement 1 is assigned sequence number 20 (NEW1=20) and inserted
after existing logical record 15 (SEQ1=15).

2. Data statements 2 and 3 are assigned sequence numbers 25 and 30 (INCR=5)
and are inserted after data statement 1.

3. Existing logical records 20, 25, and 30 are assigned sequence numbers 35, 40,
and 45, respectively.

Table 40 shows existing sequence numbers, data statements inserted, and the
resultant new sequence numbers.

Table 40. Example of Reordered Sequence Numbers

Sequence Numbers and Data
Statements Inserted

New Sequence Numbers

10 10

15 15

Data statement 1 20

Data statement 2 25

Data statement 3 30

20 35

25 40

30 45

Example 8: Renumber and Insert Records into a Library Member
In this example, two blocks (three logical records per block) are inserted into an
existing member, and the member is placed in the existing partitioned data set. A
portion of the output member is also renumbered.

//UPDATE JOB ...
//STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
// VOLUME=SER=111112
//SYSUT2 DD DSNAME=PDS,UNIT=disk,DISP=(OLD,KEEP),
// VOLUME=SER=111112

IEBUPDTE

236 z/OS V2R13.0 DFSMSdfp Utilities

//SYSIN DD *
./ CHANGE NAME=RENUM,LIST=ALL,LEVEL=01,SOURCE=0,SEQFLD=(765,783)
./ NUMBER SEQ1=AA015,NEW1=AA020,INCR=5,INSERT=YES

(Data statement 1)
(Data statement 2)
(Data statement 3)

./ NUMBER SEQ1=AA030,INSERT=YES

(Data statement 4)
(Data statement 5)
(Data statement 6)
(Data statement 7, sequence number AA035)

/*

The control statements are discussed below:

v SYSUT1 and SYSUT2 DD define the partitioned data set PDS.

v SYSIN DD defines the control data set, which follows in the input stream.

v The CHANGE function statement identifies the input member RENUM. The entire
member is listed in the message data set.

v The NUMBER detail statements specify the insert operations (INSERT=YES) and
control the renumbering operation as described below.

v Data statements 1, 2, 3, and 4, 5, 6 are the blocks of logical records to be
inserted. Because they contain blank sequence numbers, sequence numbers are
assigned when the data statements are inserted.

v Data statement 7, because it contains a sequence number, stops the insert
operation. The sequence number is identical to the number on the next record in
the old master data set; consequently, data statement 7 will replace the equally
numbered old master record in the output data set.

The existing logical records in this example have sequence numbers AA010,
AA015, AA020, AA025, AA030, AA035, AA040, AA045, AA050, BB010, and BB015.
The insertion and renumbering operations are performed as follows:

1. Data statement 1 is assigned sequence number AA020 (NEW1=AA020) and
inserted after existing logical record AA015 (SEQ1=AA015).

2. Data statements 2 and 3 are assigned sequence numbers AA025 and AA030
(INCR=5) and are inserted after data statement 1.

3. Existing logical records AA020, AA025, and AA030 are assigned sequence
numbers AA035, AA040, and AA045, respectively.

4. Data statement 4 is assigned sequence number AA050 and inserted. (The
SEQ1=AA030 specification in the second NUMBER statement places this data
statement after existing logical record AA030, which has become logical record
AA045.)

5. Data statements 5 and 6 are assigned sequence numbers AA055 and AA060
and are inserted after data statement 4.

6. Existing logical record AA035 is replaced by data statement 7, which is
assigned sequence number AA065.

7. The remaining logical records in the member are renumbered until logical record
BB010 is encountered. Because this record has a sequence number higher than
the next number to be assigned, the renumbering operation is ended.

Table 41 on page 238 shows existing sequence numbers, data statements inserted,
and the new sequence numbers.

IEBUPDTE

Chapter 10. IEBUPDTE (Update Data Set) Program 237

Table 41. Reordered Sequence Numbers

Sequence Numbers and Data
Statements Inserted

New Sequence Numbers

AA010 AA010

AA015 AA015

Data statement 1 AA020

Data statement 2 AA025

Data statement 3 AA030

AA020 AA035

AA025 AA040

AA030 AA045

Data statement 4 AA050

Data statement 5 AA055

Data statement 6 AA060

AA035 (Data statement 7) AA065

AA040 AA070

AA045 AA070

AA050 AA075

BB010 BB010

BB015 BB015

Example 9: Create a Sequential Data Set from Card Input
In this example, IEBUPDTE is used to create a sequential data set from card input.
User header and trailer labels, also from the input stream, are placed on this
sequential data set.

//LABEL JOB ...
//CREATION EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=LABEL,VOLUME=SER=123456,UNIT=disk,
// DISP=(NEW,KEEP),LABEL=(,SUL),SPACE=(TRK,(15,3))
//SYSIN DD *
./ LABEL

(Header labels)

./ ADD LIST=ALL,OUTHDR=ROUTINE1,OUTTLR=ROUTINE2

(Data records)

./ LABEL

(Trailer labels)

./ ENDUP
/*

The control statements are discussed below:

v SYSUT2 DD defines and allocates space for the output sequential data set,
called LABEL, which resides on a disk volume.

IEBUPDTE

238 z/OS V2R13.0 DFSMSdfp Utilities

v SYSIN DD defines the control data set, which follows in the input stream. (This
control data set includes the sequential input data set and the user labels, which
are on cards.)

v The first LABEL statement identifies the 80-byte card images in the input stream
which will become user header labels. (They can be modified by the user’s
header-label processing routine specified on the ADD function statement.)

v The ADD function statement indicates that the data statements that follow are
placed in the output data set. The newly created data set is listed in the message
data set. User output header and output trailer routines are to be given control
before the writing of header and trailer labels.

v The second LABEL statement identifies the 80-byte card images in the input
stream which will become user trailer labels. (They can be modified by the user’s
trailer-label processing routine specified on the ADD function statement.)

v ENDUP signals the end of the control data set.

Example 10: Copy Sequential Data Set from One Volume to Another
In this example, IEBUPDTE is used to copy a sequential data set from one DASD
volume to another. User labels are processed by user exit routines.

//LABELS JOB ...
//STEP1 EXEC PGM=IEBUPDTE,PARM=(MOD,,INTLRTN)
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=OLDMAST,DISP=OLD,LABEL=(,SUL),
// VOLUME=SER=111111,UNIT=disk
//SYSUT2 DD DSNAME=NEWMAST,DISP=(NEW,KEEP),LABEL=(,SUL),
// UNIT=disk,VOLUME=SER=XB182,
// SPACE=(TRK,(5,10))
//SYSIN DD DSNAME=INPUT,DISP=OLD,LABEL=(,SUL),
// VOLUME=SER=222222,UNIT=disk
/*

The control statements are discussed below:

v SYSUT1 DD defines the input sequential data set, called OLDMAST, which
resides on a disk volume.

v SYSUT2 DD defines the output sequential data set, called NEWMAST, which will
reside on a disk volume.

v SYSIN DD defines the control data set. The contents of this disk-resident data
set in this example are:

./ REPRO LIST=ALL,INHDR=INHRTN,INTLR=INTRTN, C

./ OUTHDR=OUTHRTN,OUTTLR=OUTTRN

./ ENDUP

v The REPRO function statement indicates that the existing input sequential data
set is copied to the output data set. This output data set is listed on the message
data set. The user’s label processing routines are to be given control when
header or trailer labels are encountered on either the input or the output data set.

v ENDUP indicates the end of the control data set.

Example 11: Create a New Partitioned Data Set
In this example, a partitioned generation data set consisting of three members is
used as source data in the creation of a new partitioned data set. IEBUPDTE is
also used to add a fourth member to the three source members and to number the
new member. The resultant data set is cataloged as a new partitioned data set.

//NEWGDS JOB ...
//STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=A.B.C,DISP=OLD

IEBUPDTE

Chapter 10. IEBUPDTE (Update Data Set) Program 239

//SYSUT2 DD DSNAME=A.B.C,DISP=(,CATLG),UNIT=disk,
// VOLUME=SER=111111,SPACE=(TRK,(100,10,10)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//SYSIN DD DATA
./ REPRO NAME=MEM1,LEVEL=00,SOURCE=0,LIST=ALL
./ REPRO NAME=MEM2,LEVEL=00,SOURCE=0,LIST=ALL
./ REPRO NAME=MEM3,LEVEL=00,SOURCE=0,LIST=ALL
./ ADD NAME=MEM4,LEVEL=00,SOURCE=0,LIST=ALL
./ NUMBER NEW1=10,INCR=5

(Data records comprising MEM4)

./ ENDUP
/*

The control statements are discussed below:

v SYSUT1 DD defines the partitioned data set, which is used as source data. It
can be a PDSE.

v SYSUT2 DD defines the new partitioned data set, which is created from the
source partitioned data set and from an additional member included as input and
data. It can be a PDSE.

v SYSIN DD defines the control data set, which follows in the input stream.

v The REPRO function statements reproduce the named source members in the
output partitioned data set.

v The ADD function statement specifies that the data records following the input
stream be included as MEM4.

v The NUMBER detail statement indicates that the new member is to have
sequence numbers assigned in columns 73 through 80. The first record is
assigned sequence number 10. The sequence number of each successive record
is increased by 5.

v ENDUP signals the end of input card data.

IEBUPDTE

240 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 11. IEHATLAS Program

The IEHATLAS program is no longer distributed. Use Device Support Facilities
(ICKDSF) instead.

© Copyright IBM Corp. 1979, 2002 241

242 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 12. IEHINITT (Initialize Tape) Program

IEHINITT is a system utility used to place standard volume label sets onto any
number of magnetic tapes mounted on one or more tape units. They can be
ISO/ANSI Version 3 or ISO/ANSI Version 4 volume label sets written in ASCII
(American Standard Code for Information Interchange) or IBM standard labels
written in EBCDIC.

In this book, the term “Version 3” is used when referring to ANSI X3.27–1978, ISO
1001–1979 and FIPS 79 standards.

The term “Version 4” is used when referring to ANSI X3.27–1987 level 4 and ISO
1001–1986(E) level 4 standards.

The U.S. government followed Federal Information Processing Standard (FIPS) 79,
dated October 17, 1980. It adopted the ISO/ANSI Version 3 standard as a Federal
Standard. Later, it withdrew FIPS 79 and did not replace it.

IEHINITT is an APF-authorized program. This means that if another program calls it,
that program must also be APF-authorized. To protect system integrity, the calling
program must follow the sytem integrity requirements described in z/OS MVS
Programming: Authorized Assembler Services Guide.

Because IEHINITT can overwrite previously labeled tapes regardless of expiration
date and security protection, IBM recommends that the security administrator use
PROGRAM protection with the following sequence of commands:

v RDEFINE PROGRAM IEHINITT ADDMEM(’SYS1.LINKLIB’//NOPADCHK)
UACC(NONE)

v PERMIT IEHINITT CLASS(PROGRAM) ID(users or groups who should have
access) ACCESS(READ)

v SETROPTS WHEN(PROGRAM) REFRESH [Omit REFRESH if you did not have
this option active previously]

To further protect against overwriting the wrong tape, IEHINITT asks the operator to
verify each tape mount in a non-library environment. Use of IEHINITT in a
system-managed tape environment assumes that security controls have been
implemented to prevent destruction of production data. SAF/RACF is invoked for
authorization processing in a library environment. The level of authority required to
proceed with the intialization is UPDATE for CLASS=TAPEVOL.

In addition, installation exits administered via CSVDYNEX, the dynamic exits
service, are available. The use of installation exits is completely optional, but if
implemented, allows an installation to review all initialization requests and indicate
whether a volume should be initialized. For details see z/OS DFSMS Installation
Exits.

IEHINITT provides volume level security checking using SAF/RACF but does not
invoke data set level checking. If you do not use SAF/RACF TAPEVOL profiles,
extra precautions may be required when using IEHINITT in a system-managed
library.

Note: As an alternative to IEHINITT, consider using the EDGINERS utility as
described in “Using DFSMSrmm” on page 246. EDGINERS checks security
and volume ownership and provides auditing; IEHINITT does not.

© Copyright IBM Corp. 1979, 2002 243

|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

Each volume label set created by the program contains:

v A standard volume label with a serial number you specify, owner identification,
and a blank security byte. ISO/ANSI

Version 3 and Version 4 labels may contain an access code other than an ASCII
space by using the ACCESS keyword. A label conforming to the ISO/ANSI
Version 3 standard will be created if a Version 3 label is requested. A label
conforming to the Version 4 standard will be constructed if a Version 4 label is
requested.

A complete description of IBM standard volume labels and Version 3 and Version
4 volume labels is in z/OS DFSMS: Using Magnetic Tapes .

v An 80-byte dummy header label. For IBM standard labels, this record consists of
the characters “HDR1” followed by character zeros. For Version 3 or Version 4
labels, this record consists of the characters “HDR1” followed by character zeros
in the remaining positions, with the exception of:

– Position 54, which will contain an ASCII space;

– A “1” in the file section, file sequence, and generation number fields;

– A leading space in the creation and expiration date fields;

– A system code of “IBMZLA”, which identifies the operating system creating the
label, followed by 14 spaces.

v A tape mark.

When a labeled tape is subsequently used as a receiving volume, the OPEN or
EOV function:

1. Rewrites the volume label.

2. Rewrites the dummy HDR1 record created by IEHINITT with operating system
data, device-dependent information, and data set information.

3. Writes HDR2 record, containing data set characteristics.

4. Writes user header labels if the user program provides exits to user label
routines.

5. Writes a tape mark.

6. Positions the volume for the user program to write data.

Note for Version 3 and Version 4 Tape Labels:

For Version 3 there is no accessibility code checking done during IEHINITT
processing, other than checking for uppercase A through Z in the ACCESS
keyword. Therefore, it is possible to create a tape with a volume access code that
the receiving operating system will not recognize. In such a situation, the tape
would have to be reinitialized to contain an acceptable access code.

The set of valid Version 3 characters is:
upper case A--Z, numeric 0--9, and the special characters
| " % & ’ () * + , - . / : ; < = > ? space

The set of valid Version 4 characters is:
upper case A--Z, numeric 0--9, and the special characters
| " % & ’ () * + , - . / : ; < = > ? _ space

The only difference between the two lists of special characters is the _
(underscore).

IEHINITT

244 z/OS V2R13.0 DFSMSdfp Utilities

If a Version 3 or Version 4 volume is initialized only with IEHINITT, the labels
produced do not frame an empty (null) data set as required for interchange. In order
to produce label symmetry described by the ISO/ANSI standards, at least a minimal
Open/Close sequence must be processed. For example, a volume initialized
previously with IEHINITT will result in label symmetry if the data set utility
IEBGENER is used before the volume leaves the system for interchange, as
follows:

//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD DUMMY
//SYSUT1 DD DUMMY,DCB=(RECFM=F,BLKSIZE=80,LRECL=80)
//SYSUT2 DD DSN=DUMMY,UNIT=(tape),LABEL=(,AL),DISP=OLD,
// DCB=(RECFM=F,BLKSIZE=80,LRECL=80),VOL=SER=volser
//SYSIN DD DUMMY

Figure 40 shows an IBM standard label group after a volume is used to receive
data. For a discussion of volume labels, see z/OS DFSMS: Using Magnetic Tapes .

Placing a Standard Label Set on Magnetic Tape
IEHINITT can be used to write BCDIC labels on 7-track tape volumes and EBCDIC
or ASCII (ISO/ANSI format) labels on 9, 18, 36, 128, and 256 track volumes. Any
number of tape cartridges or tape volumes can be labeled in a single execution of
IEHINITT.

IEHINITT is supported in all IBM 3494 and 3495 Automated Tape Library
Dataserver environments, as well as the 3495-M10 environment. Special
considerations apply when using IEHINITT in the 3494 or 3495 Automated Tape
Library Dataserver. See “Tape Library Dataserver Considerations” on page 248 for
details.

Multiple tape volumes initialized via a single INITT command are labeled in
sequential order by specifying a serial number to be written on the first tape
volume. The serial number must be specified as six numeric characters, and is
incremented by 1 for each successive tape volume. If only one tape volume is to be
labeled, the specified serial number can be either numeric or alphanumeric.

You can provide additional information, for example:
v owner name
v rewind or unload specifications
v format
v access code

You must supply all tapes to be labeled, and must include with each job request
explicit instructions to the operator about where each tape is to be mounted. For
tapes residing in a Tape Library Dataserver, see “Tape Library Dataserver
Considerations” on page 248.

Figure 40. IBM Standard Label Group after Volume Receives Data

IEHINITT

Chapter 12. IEHINITT (Initialize Tape) Program 245

IEHINITT writes 7-track tape labels in even parity (translator on, converter off).

Previously labeled tapes can be overwritten with new labels regardless of expiration
date and security protection. SAF/RACF is invoked to determine the proper level of
access to a tape volume for drives in a Tape Library Dataserver.

If errors are encountered while attempting to label a tape, the tape is left unlabeled.
IEHINITT tries to label any tapes remaining to be processed.

For information on creating routines to write standard or nonstandard labels, see
z/OS DFSMS: Using Magnetic Tapes.

Using DFSMSrmm
The EDGINERS utility of DFSMSrmm is recommended instead of IEHINITT for
labeling tapes that reside both inside and outside IBM TotalStorage Enterprise
Automated Tape Library (3495)s for the following reasons:

1. You can label a set of volumes with DFSMSrmm.

2. DFSMSrmm ensures that the data sets on the volume have expired.

3. DFSMSrmm validates that the correct volume is mounted before creating the
volume label.

4. DFSMSrmm can track that a volume needs to be labelled and can automate
tape labeling using the information in its control data set.

5. DFSMSrmm also provides facilities for erasing the data on a tape when it
expires.

6. For more information about the EDGINERS utility, see z/OS DFSMSrmm
Implementation and Customization Guide.

Input and Output
IEHINITT uses as input a control data set that contains the utility control
statements. IEHINITT produces an output data set that contains:
v Utility program identification
v Initial volume label information for each successfully labeled tape volume
v Contents of utility control statements
v Any error messages

IEHINITT supports the use of uncaptured UCB addresses. Capturing and
uncapturing is a process used by the operating system to convert 31 bit, above the
16 MB line addresses into 24 bit, below the line addresses. There are no special
considerations that need to be made by the user if devices are allocated via JCL,
the normal method of invoking IEHINITT. However, user written applications can
dynamically allocate devices without capturing them and pass them to IEHINITT as
described in Appendix A, “Invoking Utility Programs from an Application Program” on
page 321.

IEHINITT sets return codes in register 15. See Appendix A, “Invoking Utility
Programs from an Application Program” on page 321 for IEHINITT return codes.

IEHINITT

246 z/OS V2R13.0 DFSMSdfp Utilities

|
|
|

Control
IEHINITT is controlled by job and utility control statements. The job control
statements are used to process or load IEHINITT and to define data sets used and
produced by IEHINITT. The utility control statement is used to specify applicable
label information.

Job Control Statements
Table 42 shows the job control statements for IEHINITT.

Table 42. IEHINITT Job Control Statements

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEHINITT) or, if the job control
statements reside in a procedure library, the procedure name. The EXEC
statement can include additional parameter information.

SYSPRINT DD Defines a sequential data set for messages.

anyname DD Defines a tape unit to be used in a labeling operation; more than one
tape unit can be identified.

SYSIN DD Defines the control data set. The control data set normally resides in the
input stream; however, it can be defined as a member of a partitioned
data set or PDSE or as a sequential data set outside the input stream.

EXEC Statement
The EXEC statement can include PARM information that specifies the number of
lines to be printed between headings in the message data set. The EXEC
statement can be coded as follows:

//[stepname] EXEC PGM=IEHINITT

[,PARM='LINECNT=nn']

where:

PGM=IEHINITT
specifies that IEHINITT is the program you want to run.

PARM='LINECNT=nn'
specifies the number of lines per page to be printed in the SYSPRINT data set.
If PARM is omitted, 60 lines are printed between headings.

If IEHINITT is called from another program, the line count option can be passed
in a parameter list that is referred to by the optionaddr subparameter of the
LINK or ATTACH macro instruction. In addition, a beginning page number can
be passed in a 6-byte parameter list that is referred to by the hdingaddr
subparameter of the LINK or ATTACH macro instruction. For a discussion of
linkage conventions, refer to Appendix A, “Invoking Utility Programs from an
Application Program” on page 321.

SYSPRINT DD Statement
The SYSPRINT data set must have a logical record length of 121. It must consist of
fixed-length records with an ISO/ANSI control character in the first byte of each
record. Any blocking factor can be specified.

IEHINITT

Chapter 12. IEHINITT (Initialize Tape) Program 247

anyname DD Statement
The “anyname” DD statement is entered:

//anyname DD DCB=DEN=x,UNIT=(xxxx,n,DEFER)

The DEN parameter specifies the density at which the labels are written. The UNIT
parameter specifies the device type, number of units to be used for the labeling
operation, and deferred mounting. DEFER must be specified to delay mounting a
tape until IEHINITT is ready to process it. If DEFER is not used, the volume
specified in the JCL will be mounted by allocation. When IEHINITT gets control it
will detect this mounted volume and will unconditionally demount the volume. This
provides the operator an opportunity to verify that the correct tape is mounted.

See z/OS MVS JCL Reference for more information on the DEN and UNIT
parameters.

The name “anyname” must be identical to a name specified in a utility control
statement to relate the specified units to the utility control statement. You also can
code DISP=(,PASS) to cause the tape to remain mounted on the drive for use in
subsequent job steps. See “Example 8: Write on a tape following labeling without
demounting and remounting” on page 255

Tape Library Dataserver Considerations
To run IEHINITT in a library dataserver environment you would use JCL similar to:
//anyname DD UNIT=(,,DEFER),
// VOLUME=SER=volser,
// DISP=(OLD,KEEP)

'anyname' is the name on the INITT utility control statement.

'volser' is the volume serial number of a volume which meets all of the following
requirements:

v The volume resides in the tape library containing the volumes to be initialized.

v The volume has the PRIVATE use attribute.

v The volume is recorded in the tape recording technology - either 18, 36, 128, or
256-track - that is to be used in labeling the tapes.

v The volume does not have the read compatible special attribute.

v The volume is NOT one of those that will be labeled.

Note: No unit name is required, provided that 'volser' is a library-resident volume.

Additional considerations for running IEHINITT in an Automated Tape Library
Dataserver are:

v IEHINITT is not cognizant of library categories and will mount and initialize tapes
in a Tape Library Dataserver without regard to whether they reside in a
SCRATCH or PRIVATE category.

v Message IEC701D, the normal WTOR permission message issued to the
tape/operator’s console does not appear on the console when processing on
drives in an Automated Tape Dataserver.

SYSIN DD Statement
The SYSIN data set must have a logical record length of 80. Any blocking factor up
to a block size of 32720 can be specified.

IEHINITT

248 z/OS V2R13.0 DFSMSdfp Utilities

Utility Control Statement
IEHINITT uses the utility control statement INITT to provide control information for a
labeling operation. Continuation requirements for utility control statements are
described in “Continuing Utility Control Statements” on page 8.

Any number of INITT utility control statements can be included for a given execution
of the program. Each INITT statement must be labeled with a ddname that identifies
a DD statement in the input stream.

Figure 41 shows a printout of a message data set including the INITT statement
and initial volume label information. In this example, one INITT statement was used
to place serial numbers 001122 and 001123 on two standard label tape volumes.
VOL1001122 and VOL1001123 are interpreted as follows:

v VOL1 indicates that an initial volume label was successfully written to a tape
volume.

v 001122 and 001123 are the serial numbers that were written onto the volumes.

v A blank space following the serial number represents the Volume Security field,
which is not used during OPEN/CLOSE/EOV processing on a standard label
tape.

No errors occurred during processing.

The syntax of the INITT statement is:

ddname INITT SER=serial number

[,DISP={REWIND|UNLOAD}]
[,OWNER='name']
[,NUMBTAPE={n|1}]
[,LABTYPE=AL]
[,VERSION={3|4 }]
[,ACCESS=c]

where:

ddname
specifies the name that is identical to the ddname in the name field of the DD
statement defining a tape unit(s). This name must begin in column 1 of the
record which contains the INITT statement.

SER=serial number
specifies the volume serial number of the first or only tape to be labeled.
Specify up to six characters. For IBM standard labeled (SL) tapes, the serial
number cannot contain blanks, commas, apostrophes, equal signs, or special
characters other than periods, hyphens, dollar signs, pound signs, and at signs
('@'). ISO/ANSI labeled tapes (AL) may contain any valid ISO/ANSI 'a' type
character as described under the OWNER keyword. However, if any

SYSTEM SUPPORT UTILITIES IEHINITT

ALL INITT SER=001122,NUMBTAPE=2,OWNER=’P.T.BROWN’,DISP=REWIND

VOL1001122 P.T.BROWN
VOL1001123 P.T.BROWN

Figure 41. Printout of INITT Statement Specifications and Initial Volume Label Information

IEHINITT

Chapter 12. IEHINITT (Initialize Tape) Program 249

nonalphanumeric character (including a period or a hyphen) is present,
delimiting apostrophes must be included.

You cannot use a blank as the first character in a volume serial number.

A specified serial number is increased by one for each additional tape to be
labeled. (Serial number 999999 is increased to 000000.) When processing
multiple tapes, the volume serial numbers must be all numeric.

DISP={REWIND|UNLOAD}
specifies if a tape is to be rewound or rewound and unloaded. Tapes in a Tape
Library Dataserver are unconditionally unloaded regardless of the specification
for this parameter. These values can be coded:

REWIND
specifies that a tape is to be rewound (but not unloaded) after the label has
been written.

UNLOAD
specifies that a tape is to be rewound and unloaded after the label has
been written. This is the default.

OWNER='name'
specifies the owner’s name or similar identification. The information is specified
as character constants, and can be up to 10 bytes in length for EBCDIC and
BCD volume labels, or up to 14 bytes in length for volume labels written in
ASCII. The delimiting apostrophes must be present if blanks, commas,
apostrophes, equal signs, or other special characters (except periods or
hyphens) are included. The set of valid ISO/ANSI 'a' type characters for ASCII
tapes is as follows: upper case A-Z, numeric 0-9, and special characters
!*"%&'()*+,-./:;<=>?. The set of valid EBCDIC characters is as follows:
uppercase A-Z, numeric 0-9, and special characters ¢ . < >(+ ¦(X'6A') |(X'4F') ’
& ! $ *) ; ^ - \ /, % _ ? ′ : # @ ' = ″ ~ { } \.

If an apostrophe is included within the OWNER name field, it must be written as
two consecutive apostrophes. The OWNER keyword can be specified for
Version 3 or Version 4 tapes. If Version 4 is specified, any ISO/ANSI ’a’ type
character can be used.

NUMBTAPE={n|1}
specifies the number of tapes to be labeled according to the specifications
made in this control statement. The value n represents a number from 1 to 255.
If more than one tape is specified, the volume serial number of the first tape
must be numeric.

LABTYPE=AL
When LABTYPE=AL is specified in the INITT statement, IEHINITT initializes
tapes to conform to the Version 3 standard or the Version 4 standard as
specified in the VERSION keyword. The format of the VERSION keyword
follows.

Default: The tape is written in EBCDIC in IBM standard format for tape
cartridges or 9-track tape volumes and in BCDIC for 7-track tape volumes.

VERSION={3|4}
When LABTYPE=AL is specified, the VERSION keyword determines if the
format will be Version 3 or Version 4.

3 Initializes the tape to be Version 3

4 Initializes the tape to be Version 4

IEHINITT

250 z/OS V2R13.0 DFSMSdfp Utilities

The volume label (VOL 1) is written the same for Version 3 and Version 4 with
one exception. Field “Label Standard Version” will be 3 for Version 3 and 4 for
Version 4. There will be no difference in the initialization of the header labels.

Default: If this keyword is specified, that value is used. If not, the installation
version level in the DEVSUPxx PARMLIB member is used. If that is not
specified, Version 3 is the default.

ACCESS=c
specifies the Version 3 and Version 4 volume accessibility code. Version 3 valid
values for c are uppercase A through Z only. The default value is a blank
character, indicating unlimited access to the volume. For Version 3, you cannot
specify a blank character for the access code; it must be allowed to default.
Version 4 valid values are any ISO/ANSI ’a’ type characters as follows: upper
case A-Z, numeric 0-9, and special characters !*"%&'()*+,-./:;<=>?.

The Volume Access installation exit routine must be modified to allow
subsequent use of the volume if ACCESS is specified. For further information
about volume accessibility and ISO/ANSI installation exits, see z/OS DFSMS:
Using Magnetic Tapes .

You must specify LABTYPE=AL and VERSION if you specify ACCESS.

The ACCESS keyword can be specified for Version 3 or Version 4. If Version 4
is specified, the keyword can be any ISO/ANSI ’a’ type character.

IEHINITT Examples
The following examples illustrate some of the uses of IEHINITT. Table 43 can be
used as a quick-reference guide to IEHINITT examples. The numbers in the
“Example” column refer to examples that follow.

Table 43. IEHINITT Example Directory

Operation Comments Example

LABEL Three 9-track tapes are to be labeled. 1

LABEL A 9-track tape is to be labeled in ISO/ANSI. 2

LABEL Two groups of 9-track tape volumes are to be labeled. 3

LABEL 9-track tape volumes are to be labeled. Sequence numbers are to be incremented by
10.

4

LABEL Three 9-track tape volumes are to be labeled. An alphanumeric label is to be placed on
a tape volume; numeric labels are placed on the remaining two tape volumes.

5

LABEL Two 9-track tape volumes are to be labeled. The first volume is labeled at a density of
6250 bpi; the second at a density of 1600 bpi.

6

LABEL A 9-track tape volume is labeled in ISO/ANSI format with a nonblank access code. 7

Examples that use tape in place of actual device numbers must be changed before
use. The actual device numbers depend on how your installation has defined the
devices to your system.

Example 1: Write EBCDIC Labels on Three Tapes
In this example, serial numbers 001234, 001235 and 001236 are placed on three
tape volumes. The labels are written in EBCDIC at 800 bits per inch. Each volume
labeled is mounted, when it is required, on a single 9-track tape unit.

IEHINITT

Chapter 12. IEHINITT (Initialize Tape) Program 251

//LABEL1 JOB ...
//STEP1 EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
//LABEL DD DCB=DEN=2,UNIT=(tape,1,DEFER)
//SYSIN DD *
LABEL INITT SER=001234,NUMBTAPE=3
/*

The control statements are discussed below:

v LABEL DD defines the tape unit used in the labeling operation.

v SYSIN DD defines the control data set, which follows in the input stream.

v LABEL INITT specifies the number of tapes to be labeled (3), beginning with
001234.

Example 2: Write an ISO/ANSI Label on a Tape
In this example, serial number 001001 is placed on one ISO/ANSI tape volume; the
label is written at 800 bits per inch. The volume labeled is mounted, when it is
required, on a 9-track tape unit.

//LABEL2 JOB ...
//STEP1 EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
//ASCIILAB DD DCB=DEN=2,UNIT=(tape,1,DEFER)
//SYSIN DD *
ASCIILAB INITT SER=001001,OWNER=’SAM A. BROWN’,LABTYPE=AL
/*

The control statements are discussed below:

v ASCIILAB DD defines the tape volume to be used in the labeling operation.

v SYSIN DD defines the control data set, which follows in the input stream.

v ASCIILAB INITT specifies the serial number, owner ID and label type for the
volume.Because the VERSION keyword was not specified, the ISO/ANSI tape
will be created based on what is specified in the DEVSUPxx parmlib member or
as a version 3 by default.

Example 3: Place Two Groups of Serial Numbers on Six Tape Volumes
In this example, two groups of serial numbers (001234, 001235, 001236, and
001334, 001335, 001336) are placed on six tape volumes. The labels are written in
EBCDIC at 800 bits per inch. Each volume labeled is mounted, when it is required,
on a single 9-track tape unit.

//LABEL3 JOB ...
//STEP1 EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
//LABEL DD DCB=DEN=2,UNIT=(tape,1,DEFER)
//SYSIN DD *
LABEL INITT SER=001234,NUMBTAPE=3
LABEL INITT SER=001334,NUMBTAPE=3
/*

The control statements are discussed below:

v LABEL DD defines the tape unit to be used in the labeling operation.

v SYSIN DD defines the control data set, which follows in the input stream.

v LABEL INITT defines the two groups of serial numbers to be put on six tape
volumes.

IEHINITT

252 z/OS V2R13.0 DFSMSdfp Utilities

Example 4: Place Serial Number on Eight Tape Volumes
In this example, serial numbers 001234, 001244, 001254, 001264, 001274, and so
forth, are placed on eight tape volumes. The labels are written in EBCDIC at 800
bits per inch. Each volume labeled is mounted, when it is required, on one of four
9-track tape units.

//LABEL4 JOB ...
//STEP1 EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
//LABEL DD DCB=DEN=2,UNIT=(tape,4,DEFER)
//SYSIN DD *
LABEL INITT SER=001234
LABEL INITT SER=001244
LABEL INITT SER=001254
LABEL INITT SER=001264
LABEL INITT SER=001274
LABEL INITT SER=001284
LABEL INITT SER=001294
LABEL INITT SER=001304
/*

The control statements are discussed below:

v LABEL DD defines the tape unit used in the labeling operation.

v SYSIN DD defines the control data set, which follows in the input stream.

v The LABEL INITT statements define the tapes to be labeled by volume serial
number.

Example 5: Write EBCDIC Labels in Different Densities
In this example, serial number TAPE1 is placed on a tape volume, and serial
numbers 001234 and 001235 are placed on two tape volumes. The labels are
written in EBCDIC at 800 and 1600 bits per inch, respectively.

//LABEL5 JOB ...
//STEP1 EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
//LABEL1 DD DCB=DEN=2,UNIT=(tape,1,DEFER)
//LABEL2 DD DCB=DEN=3,UNIT=(tape,1,DEFER)
//SYSIN DD *
LABEL1 INITT SER=TAPE1
LABEL2 INITT SER=001234,NUMBTAPE=2
/*

The control statements are discussed below:

v LABEL1 DD and LABEL2 DD define two tape volumes to be used in the labeling
operation.

v SYSIN DD defines the control data set, which follows in the input stream.

v LABEL1 INITT places the serial number TAPE1 on the tape volume defined in
LABEL1 DD. LABEL2 INITT places the serial numbers 001234 and 001235 on
the tape volume defined in LABEL2 DD.

Example 6: Write Serial Numbers on Tape Volumes at Two Densities
In this example, the serial number 006250 is written in EBCDIC on a tape volume
at a density of 6250 bpi, and the serial number 001600 is written in EBCDIC on a
second volume at a density of 1600 bpi.

//LABEL6 JOB ...
//STEP1 EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
//DDFIRST DD DCB=DEN=4,UNIT=(tape,1,DEFER)
//DDSECOND DD DCB=DEN=3,UNIT=(tape,1,DEFER)

IEHINITT

Chapter 12. IEHINITT (Initialize Tape) Program 253

//SYSIN DD *
DDFIRST INITT SER=006250
DDSECOND INITT SER=001600
/*

IEHINITT

254 z/OS V2R13.0 DFSMSdfp Utilities

The control statements are discussed below:

v DDFIRST DD defines the first tape volume to be used.

v DDSECOND DD defines the second tape volume to be used.

v SYSIN DD defines the control data set, which follows in the input stream.

v DDFIRST INITT writes the serial number 006250 on the volume defined in
DDFIRST DD. DDSECOND INITT writes the serial number 001600 on the
volume defined in DDSECOND DD.

Example 7: Write an ISO/ANSI Label with an Access Code
In this example, a version 4 ISO/ANSI (AL) labeled tape is created with a nonblank
access code. The volume serial number is TAPE01.

//LABEL7 JOB ...
//STEP1 EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
//LABEL DD UNIT=(tape,1,DEFER),DCB=DEN=4
//SYSIN DD *
LABEL INITT SER=TAPE01,OWNER=TAPOWNER,LABTYPE=AL,ACCESS=A,VERSION 4
/*

The control statements are discussed below:

v LABEL DD defines the device on which the tape is mounted.

v SYSIN DD defines the control data set, which follows in the input stream.

v The INITT statement creates a Version 4 ISO/ANSI label for the tape with volume
serial number TAPE01, owned by TAPOWNER. The ACCESS code is specified
as “A”, and the operating system that receives this volume must be able to
recognize the “A” in order for the volume to be accepted.

Example 8: Write on a tape following labeling without demounting and
remounting

In this example, you can label a tape in one step of a job, and then, without the
system demounting and remounting that tape between steps, write to the tape in a
subsequent step of the same job. The necessary JCL code follows:

//STEP1 EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=*

(1) //LABEL DD UNIT=(tape,1,DEFER),DISP=(,PASS)
//SYSIN DD *

(2) LABEL INITT SER=serial,DISP=REWIND
//*
//STEP2 EXEC PGM=user_program
//INPUT DD DSN=input_dsn,DISP=SHR
//OUTPUT DD DSN=dsname,DISP=(NEW,CATLG),
// DCB=(dcbinfo),

(3) // UNIT=tape,VOL=(,RETAIN,SER=serial)
Notes:

(1) Either DISP=(NEW,PASS) or VOL=(,RETAIN) must be specified.
(2) DISP=REWIND must be specified on the INITT statement.
(3) VOL=SER=serial must be specified.

VOL=REF=*.STEP1.LABEL will not work.

IEHINITT

Chapter 12. IEHINITT (Initialize Tape) Program 255

IEHINITT

256 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 13. IEHLIST (List System Data) Program

IEHLIST is a system utility used to list entries in the directory of one or more
partitioned data sets or PDSEs, or entries in an indexed or non-indexed volume
table of contents. Any number of listings can be requested in a single execution of
the program. For an example of a VTOC listing produced by IEHLIST and a
detailed explanation of the fields in the listing, see Appendix D, “IEHLIST VTOC
Listing” on page 349.

Listing a Partitioned Data Set or PDSE Directory
IEHLIST can list up to 10 partitioned data set or PDSE directories at a time.

The directory of a partitioned data set is composed of variable-length records
blocked into 256-byte blocks. Each directory block can contain one or more entries
that reflect member or alias names and other attributes of the partitioned members.
IEHLIST can list these blocks in edited and unedited format.

The directory of a PDSE, when listed, will have the same format as the directory of
a partitioned data set.

Edited Format
The edited format of a partitioned data set directory is meant to be used with
module libraries. Most of the information given in an edited listing is meaningful only
for load modules.

If you request an edited listing of a partitioned data set or PDSE whose members
are not load modules, you will get an edited listing. In that case, the listing will
contain information about your data set that will not necessarily be correct. Only
request an edited listing of a data set whose members are load modules.

When you request an edited format of a module library, IEHLIST provides the
following information:
v Member name
v Entry point
v Relative address of start of member
v Relative address of start of text
v Contiguous virtual storage requirements
v Length of first block of text
v Origin of first block of text
v System status indicators
v Linkage editor attributes
v APF authorization required
v Other information.

Figure 42 on page 258 shows an edited entry for a partitioned member, LOADMOD.
The entry is shown as it is listed by the IEHLIST program. Please note, however,
that this figure is only an example of a listing of a partitioned data set or PDSE
directory. Your actual edited listing produced by the IEHLIST program may differ.

© Copyright IBM Corp. 1979, 2002 257

Before printing the directory entries on the first page, an index is printed explaining
the asterisk (*), if any, following a member name, the attributes (fields 3 and 10),
and other information (field 12). Under OTHER INFORMATION INDEX, scatter and
overlay format data is described positionally as it appears in the listing; under the
ATTRIBUTE INDEX, the meaning of each attribute bit is explained. There is no
index for the VS ATTR field. The data displayed in this field is from the PDS2FTBO
field in the PDS directory.

Each directory entry occupies one printed line, except when the member name is
an alias and the main member name and associated entry point appear in the user
data field. When this occurs, two lines are used and every alias is followed by an
asterisk. If the main member is renamed, the old member name will still be in the
alias directory entry and consequently printed on the second line.

Unedited (Dump) Format
The unedited formatted listing produced by IEHLIST can be used to list the
directories of any type of partitioned data set or PDSE. The directories of partitioned
data sets or PDSEs whose members were not produced by the linkage editor are
best listed using the unedited format. In an unedited listing, each member is listed
separately and in hexadecimal.

Figure 43 on page 259 shows the format of an unedited listing of a three-member
partitioned data set or PDSE directory. Please note, however, that the figure
displays only an example of an unedited formatted listing produced by IEHLIST
program. Your actual unedited listing by IEHLIST program may differ.

Note: A listing of a partitioned data set or PDSE directory organized as shown in
Figure 43 on page 259 can also be obtained by using IEBPTPCH (see
Chapter 9, “IEBPTPCH (Print-Punch) Program” on page 197).

OTHER INFORMATION INDEX
SCATTER FORMAT SCRT=SCATTER/TRANSLATION TABLE TTR IN HEX, LEN OF SCTR LIST IN DEC, LEN OF TRANS TABLE IN DEC,

ESDID OF FIRST TEXT RCD IN DEC, ESDID OF CSECT CONTAINING ENTRY POINT IN DEC

OVERLAY FORMAT ONLY=NOTE LIST RCD TTR IN HEX, NUMBER OF ENTRIES IN NOTE LIST RCD IN DEC

ALIAS NAMES ALIAS MEMBER NAMES WILL BE FOLLOWED BY AN ASTERISK IN THE PDS FORMAT LISTING

ATTRIBUTE INDEX

BIT ON OFF BIT ON OFF BIT ON OFF BIT ON OFF

0 RENT NOT RENT 4 OL NOT OL 8 NOT DC DC 12 NOT EDIT EDIT
1 REUS NOT REUS 5 SCTR BLOCK 9 ZERO ORG NOT ZERO 13 SYMS NO SYMS
2 ONLY NOT ONLY 6 EXEC NOT EXEC 10 EP ZERO NOT ZERO 14 F LEVEL E LEVEL
3 TEST TEST 7 1 TXT MULTI RCD 11 NO RLD RLD 15 REFR NOT REFR

MEMBER ENTRY ATTR REL ADDR-HEX CONTIG LEN 1ST ORG 1ST SST VS AUTH OTHER
NAME PT-HEX HEX BEGIN 1ST TXT STOR-DEC TXT-DEC TXT-HEX INFO ATTR REQ REQ INFORMATION

LOADMOD 000000 06E2 000004 00020F 000166248 0927 ABSENT 880000 NO SCTR=000000
00484,01084,32,32

OF THE 00002 DIRECTORY BLOCKS ALLOCATED TO THIS PDS, 00001 ARE(IS) COMPLETELY UNUSED

Figure 42. Sample of an Edited Partitioned Directory Entry

IEHLIST

258 z/OS V2R13.0 DFSMSdfp Utilities

To correctly interpret user data information, you must know the format of the
partitioned entry. The formats of directory entries are discussed in z/OS DFSMS:
Using Data Sets.

Listing a Volume Table of Contents
IEHLIST can be used to list, partially or completely, entries in a specified volume
table of contents (VTOC), whether indexed or non-indexed. The program lists the
contents of selected data set control blocks (DSCBs) in edited or unedited form.

For more information on indexed VTOCs see, z/OS DFSMSdfp Advanced Services.

Edited Format
Two edited formats are available.

First Edited Format
The first edited format is a comprehensive listing of the DSCBs in the VTOC. It
provides the status and attributes of the volume, and describes in depth the data
sets residing on the volume. This listing includes:

v Logical record length and block size

v Initial and secondary allocations

v Upper and lower limits of extents

v Alternate track information

v Available space information, including totals of unallocated cylinders, unallocated
tracks, and unallocated (Format 0) DSCBs

v Option codes (printed as two hexadecimal digits)

v Record formats

v SMS indicators

The first DSCB on your listing is always a VTOC (Format 4) DSCB. It defines the
scope of the VTOC itself; that is, it contains information about the VTOC and the
volume rather than the data sets referenced by the VTOC.

Indexed VTOCs: For indexed VTOCs, there are two types of formatted listings.
These types are specified using the INDEXDSN parameter.

If INDEXDSN is omitted, the listing contains:

v A statement of the number of levels in the index, if enabled.

v A formatted Format 4 DSCB.

v Formatted data set entries in alphanumeric order (Format 1 DSCB
physical-sequential order if the index is disabled).

v Formatted freespace information.

v Totals of unallocated cylinders, unallocated tracks, unallocated (Format 0)
DSCBs, and unallocated VIRs.

MEMBERS TTRC VARIABLE USER DATA ---(USER DATA AND TTRC ARE IN HEX)
MEMBER1 0009150F 0100000000 89135F0089 135F101300 5C005C0000 D1C1D9C5C4
MEMBER2 000E010F 0100001800 92217F0092 217F163900 1300130000 C9C2D4E4E2
MEMBER3 000D0B0F 0100000000 91194F0091 194F125100 1100110000 D1C1D9C5C4

Figure 43. Format of an Unedited Listing of a Partitioned Data Set or PDSE Directory. Note
that there are five bytes printed in each group of hexadecimal characters.

IEHLIST

Chapter 13. IEHLIST (List System Data) Program 259

If INDEXDSN=name is specified, the listing contains, in addition to the items above:

v Formatted space and allocation information.

v Allocated VTOC index entry records, formatted and listed by level and key
sequence within level (in physical-sequential order if the index is disabled).

v If the VTOC index is disabled, a statement is included to this effect.

Note: For a sample of the first edited format illustrating how each DSCB will
appear in the listing, see Appendix D, “IEHLIST VTOC Listing” on page 349.

Second Edited Format
The second edited format is an abbreviated description of the data sets. It is
provided by default when no format is specifically requested. It provides the
following information:
v Data set name
v Creation date (yyyy.ddd)
v Expiration date (yyyy.ddd)
v Password indication
v Organization of the data set
v Extents
v Volume serial number
v SMS indicators

The last line in the listing indicates how much space remains in the VTOC.

For non-indexed VTOCs, data set entries are listed in physical-sequential order.
Totals of unallocated cylinders, unallocated tracks, and unallocated (Format 0)
DSCBs are also listed.

For indexed VTOCs, this listing contains:

v A statement of the number of levels in the index.

v Data set entries listed in alphanumeric order.

v Totals of unallocated cylinders, unallocated tracks, unallocated (Format 0)
DSCBs, and unallocated VIRs.

v SMS indicators.

Unedited (Dump) Format
This option produces a complete hexadecimal listing of the DSCBs in the VTOC.
The listing is in an unedited dump form, requiring you to know the various formats
of applicable DSCBs. The VTOC overlay for IEHLIST listings of VTOCs in dump
format is useful in identifying the fields of the DSCBs.

For non-indexed VTOCs, this listing contains:

v DSCBs dumped, in physical-sequential order.

v Totals of unallocated cylinders, unallocated tracks, and unallocated (Format 0)
DSCBs.

For indexed VTOCs there are two types of dump listings. These types are specified
using the INDEXDSN parameter.

If INDEXDSN is omitted, the listing contains:

v DSCBs dumped in physical-sequential order.

– If the device has 64K or less tracks, then one token Format 5 DSCB is
identified.

IEHLIST

260 z/OS V2R13.0 DFSMSdfp Utilities

– If the device has more than 64K tracks, then both a token Format 5 DSCB
and a token Format 7 DSCB are identified.

v Unformatted free space information.

v Totals of unallocated cylinders, unallocated tracks, unallocated (Format 0)
DSCBs, and unallocated VIRs.

If INDEXDSN=name is specified, the listing contains, in addition to the items above:

v A dump of the space and allocation information.

If the VTOC index is disabled, both allocated and unallocated records are
dumped in physical-sequential order.

v If the VTOC index is disabled, a statement is included to this effect.

For a discussion of the various formats that data set control blocks can assume,
see z/OS DFSMSdfp Advanced Services.

Input and Output
IEHLIST uses the following input:

v One or more source data sets that contain the data to be listed. The input data
set can be:
– A VTOC
– A partitioned data set or PDSE

v A control data set, that contains utility control statements that are used to control
the functions of IEHLIST.

IEHLIST produces as output a message data set that contains the result of the
IEHLIST operations. The message data set includes the listed data and any error
messages.

If IEHLIST is invoked from an application program, you can dynamically allocate the
devices and data sets by issuing SVC 99 before calling IEHLIST.

See Appendix A for IEHLIST return codes.

Control
IEHLIST is controlled by job and utility control statements. The job control
statements are used to process or load IEHLIST and to define the data sets used
and produced by IEHLIST.

Utility control statements are used to control the functions of the program and to
define those data sets or volumes to be modified.

Job Control Statements
Table 44 shows the job control statements for IEHLIST.

Table 44. IEHLIST Job Control Statements

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEHLIST) or, if the job control
statements reside in a procedure library, the procedure name. Additional
PARM information can be specified to control the number of lines printed
per page.

IEHLIST

Chapter 13. IEHLIST (List System Data) Program 261

Table 44. IEHLIST Job Control Statements (continued)

Statement Use

SYSPRINT DD Defines a sequential data set for messages.

anyname DD Defines a permanently mounted or mountable volume. The maximum
number of these allocated devices cannot exceed 256 per job step.

SYSIN DD Defines the control data set. The control data set normally follows the job
control language in the input stream; however, it can be defined as an
unblocked sequential data set or member of a procedure library.

IEHLIST specifications do not allow for serialization of the object being listed. If
another program updates a block of the data set just prior to IEHLIST reading the
data set, a message (IEH105I or IEH114I) may be issued and the output produced
by IEHLIST may be incorrect. If this happens, rerun the job.

EXEC Statement
You can control the number of lines IEHLIST will print per page of output using the
PARM parameter on the EXEC statement. The EXEC statement can be coded:

//[stepname] EXEC PGM=IEHLIST[,PARM='LINECNT=xx']

where:

PGM=IEHLIST
specifies that IEHLIST is the program you want to run.

PARM='LINECNT=xx'
specifies the number of lines, xx, to be printed per page. The number specified
by xx must be a decimal number from 01 to 99. If LINECNT is not specified, 58
lines are printed per page.

The PARM field cannot contain embedded blanks, zeros, or any other PARM
keywords if LINECNT is specified.

SYSPRINT DD Statement
The block size for SYSPRINT must be a multiple of 121. Any blocking factor can be
specified for this block size.

anyname DD Statement
A DD statement must be included for each permanently mounted or mountable
volume referred to in the job step. These DD statements are used to allocate
devices: they are not true data definition statements. Concatenated DD statements
are not allowed.

Because IEHLIST modifies the internal control blocks created by device allocation
DD statements, these DD statements must not include the DSNAME parameter. (All
data sets are defined explicitly or implicitly by utility control statements.)

The DD statement can be entered:
//anyname DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME=SER parameters define the device type and volume serial
number without requiring that a real data set be allocated on the volume.

SYSIN DD Statement
The block size for SYSIN must be a multiple of 80. Any blocking factor can be
specified for this block size. You can concatenate DD statements for SYSIN.

IEHLIST

262 z/OS V2R13.0 DFSMSdfp Utilities

Utility Control Statements
Table 45 shows the utility control statements for IEHLIST.

Table 45. IEHLIST Utility Control Statements

Statement Use

LISTPDS Requests a directory listing of one or more partitioned data sets or
PDSEs.

LISTVTOC Requests a listing of all or part of a volume table of contents.

Continuation requirements for utility control statements are described in “Continuing
Utility Control Statements” on page 8.

LISTPDS Statement
The LISTPDS statement is used to request a directory listing of one or more
partitioned data sets or PDSEs that reside on the same volume.

The FORMAT option of the LISTPDS statement may be used only on a partitioned
data set whose members have been created by the linkage editor. See “Listing a
Partitioned Data Set or PDSE Directory” on page 257 for an explanation of the
edited listing of module libraries. If you try to use FORMAT with a PDSE or
partitioned data set whose members are not load modules, the listing will contain
undependable information.

The syntax of the LISTPDS statement is:

[label] LISTPDS DSNAME=(name[,name[,...]])
[,VOL=device=serial]
[,{DUMP|FORMAT}]

where:

DSNAME=(name[,name[,...]])
specifies the fully qualified names of the partitioned data sets or PDSEs whose
directories are to be listed. A maximum of 10 names is allowed. If the list
consists of only a single name, the parentheses can be omitted.

VOL=device=serial
specifies the device type and volume serial number of the volume on which the
partitioned data set or PDSE directory resides. If the partitioned data set or
PDSE is not on the system residence volume, the VOL parameter is required.

DUMP
specifies that the listing is to be in unedited, hexadecimal form. DUMP is the
default.

FORMAT
specifies that the listing is to be edited for each directory entry.

The FORMAT option may be used only on a partitioned data set whose
members have been created by the linkage editor. Members that have not been
created by the linkage editor cause their directory entries to be listed in
unedited (DUMP) format.

LISTVTOC Statement
The LISTVTOC statement is used to request a partial or complete listing of the
entries in a specified volume table of contents.

IEHLIST

Chapter 13. IEHLIST (List System Data) Program 263

If you are using IEHLIST to list both the VTOC and the index data set of an indexed
VTOC, refer to “Listing a Volume Table of Contents” on page 259.

The syntax of the LISTVTOC statement is:

[label] LISTVTOC [{DUMP|FORMAT[,PDSESPACE]}]
[,INDEXDSN=SYS1.VTOCIX.xxxx]
[,DATE={dddyy|dddyyyy}]
[,VOL=device=serial]
[,DSNAME=(name[,name[,...]])

where:

DUMP
specifies that the listing is to be in unedited, hexadecimal form. The dump
option will show SMS indicators and fields in the VTOC (format 1 and 4
DSCBs) and the VTOC index in hexadecimal format.

FORMAT [,PDSESPACE]
specifies that a comprehensive edited listing is to be generated.

When PDSESPACE is specified, the space allocated, and space used, is
displayed. This display occurs only for PDSE data sets, and is in kilobytes
(kbytes).

If both FORMAT and DUMP are omitted, an abbreviated edited format is
generated.

INDEXDSN=SYS1.VTOCIX.xxxx
specifies that index information is to be listed, in addition to the VTOC. The
value xxxx is any third level qualifier. DUMP or FORMAT must be specified if
INDEXDSN is specified. For more information on indexed VTOCs, refer to
“Listing a Volume Table of Contents” on page 259.

DATE={dddyy|dddyyyy}
specifies that each entry that expires before this date is to be flagged with an
asterisk (*) after the entry name in the listing. This parameter applies only to the
abbreviated edited format. The specification of dddyy is the same as ddd19yy.

The VTOC expiration date of ’never expire’ (1999.365 or 1999.366) is treated in
a special way. That is, even if the DATE= parameter specifies a year date after
1999, those expiration dates are not flagged with an asterisk (*). The ’never
expire’ expiration date will never be flagged with an asterisk with any DATE=
specification.

The DATE= parameter specifies a date with ordinary days. Even if a date such
as DATE=36599 is specified, it does not mean a ’never expire’ date. Instead, it
just means a day of 1999/12/31. So, the VTOC expiration date of a date year
after 1999 is not flagged with an asterisk.

If you code a date after 1999, then data sets that have the special expiration
dates of 36599, 36699, 3651999, 3661999, 99999, or 9991999 are not flagged
with an asterisk. Those data sets never expire.

The date that you code is not treated as a ’never expire’ date. For example if
you code 36599 or 3651999, data sets that expire December 30, 1999 will be
flagged and data sets with expiration dates of December 31, 1999 and January
1, 2000 will not be flagged. If you code a ddd value that exceeds the number of
days in that year, IEHLIST adds the extra days into the following year. For
example, 36699 means January 1, 2000, 3671999 means January 2, 2000, and
9999 means September 25, 2001.

IEHLIST

264 z/OS V2R13.0 DFSMSdfp Utilities

dddyy
specifies the day of the year, ddd, and the last two digits of the year, yy.

dddyyyy
specifies the day of the year, ddd, and the year from 1900 to 2155, yyyy.

Default: No asterisks appear in the listing.

VOL=device=serial
specifies the device type and volume serial number of the volume on which the
VTOC resides.

DSNAME=(name[,name[,...]])
specifies the fully qualified names of the data sets whose entries are to be
listed. A maximum of 10 names is allowed. If the list consists of only a single
name, the parentheses can be omitted.

Note: If the DSNAME specified is a VSAM cluster name, the information
returned indicates that the data set exists on the physical device
(volume). But since there is no format 1 DSCB for the VSAM cluster, the
output for a VSAM cluster will not be identical to the output for a normal
data set.

IEHLIST Examples
The following examples illustrate some of the uses of IEHLIST. Table 46 can be
used as a quick-reference guide to IEHLIST examples. The numbers in the
“Example” column refer to examples that follow.

Table 46. IEHLIST Example Directory

Operation Devices Comments Example

LISTPDS Disk and system
output device

One PDSE directory and two partitioned data set directories
are listed.

1

LISTVTOC Disk and system
output device

Volume table of contents is listed in edited form; selected
data set control blocks are listed in unedited form.

2

Examples that use disk in place of actual device numbers or names must be
changed before use. The actual device numbers or names depend on how your
installation has defined the devices to your system.

Example 1: List Partitioned Directories Using DUMP and FORMAT
In this example, the directory of a PDSE is listed. In addition, the directories of two
partitioned data sets that reside on the system residence volume are listed.

//LISTPDIR JOB ...
//STEP1 EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A
//DD1 DD UNIT=diskB,VOLUME=REF=SYS1.NUCLEUS,DISP=OLD
//DD2 DD UNIT=diskA,VOLUME=SER=222222,DISP=OLD
//SYSIN DD *

LISTPDS DSNAME=D42.PDSE1,VOL=diskA=222222
LISTPDS DSNAME=(D55.PART1,D55.PART2),FORMAT

/*

The control statements are discussed below:

v DD1 DD defines the system residence device.

v DD2 DD defines a device on which a disk volume (222222) is mounted.

IEHLIST

Chapter 13. IEHLIST (List System Data) Program 265

v SYSIN DD defines the control data set, which follows in the input stream.

v The first LISTPDS statement indicates that the PDSE directory belonging to data
set D42.PDSE1 is to be listed. The listing is in unedited (dump) format. This data
set resides on volume 222222.

v The second LISTPDS statement indicates that partitioned data set directories
belonging to data sets D55.PART1 and D55.PART2 are to be listed. The listing is
in edited format. These data sets exist on the system residence volume.

Figure 43 on page 259 shows an unedited entry for a partitioned member. Figure 42
on page 258 shows an edited entry.

Example 2: List Non-indexed Volume Table of Contents
In this example, a non-indexed volume table of contents is listed in the first edited
format. The edited listing is supplemented by an unedited listing of selected data
set control blocks.

//VTOCLIST JOB ...
//STEP1 EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A
//DD2 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//SYSIN DD *

LISTVTOC FORMAT,VOL=disk=111111
LISTVTOC DUMP,VOL=disk=111111,DSNAME=(SET1,SET2,SET3)

/*

The control statements are discussed below:

v DD2 DD defines a device containing the specified volume table of contents.

v SYSIN DD defines the control data set, which follows in the input stream.

v The first LISTVTOC statement indicates that the volume table of contents on the
specified disk volume is to be listed in edited form.

v The second LISTVTOC statement indicates that the data set control blocks
representing data sets SET1, SET2, and SET3 are to be listed in unedited form.

IEHLIST

266 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 14. IEHMOVE (Move System Data) Program

IEHMOVE is a system utility used to move or copy logical collections of operating
system data.

The information given on IEHMOVE is provided for the sake of compatibility only.
DFSMSdss should be used instead of IEHMOVE to move or copy data to volumes
managed by the Storage Management Subsystem. DFSMSdss or IEBCOPY should
be used to process PDSEs. You cannot use IEHMOVE with PDSEs or ISAM or
VSAM data sets.

If you do use IEHMOVE to move or copy data sets to SMS-managed volumes, you
must preallocate all the target data sets. If the data set you are copying or moving
is cataloged, and you are moving or copying it to an SMS-managed volume, you
must rename the data set.

See z/OS DFSMS: Using Data Sets for more information on allocating
SMS-managed data sets and z/OS DFSMS Access Method Services for information
on the ALLOCATE command.

IEHMOVE can be used to move or copy:

v A sequential, partitioned or BDAM data set residing on one to five volumes.

v A group of non-VSAM data sets cataloged in an integrated catalog facility
catalog.

v A volume of data sets.

v BDAM data sets with variable-spanned records.

A move operation differs from a copy operation in that a move operation scratches
source data if the data set resides on a direct access volume and the expiration
date has occurred, while a copy operation leaves source data intact. In addition, for
cataloged data sets, a move operation updates the catalog to refer to the moved
version (unless otherwise specified), while a copy operation leaves the catalog
unchanged.

The scope of a basic move or copy operation can be enlarged by:
v Including or excluding data sets from a move or copy operation
v Merging members from two or more partitioned data sets
v Including or excluding selected members
v Renaming moved or copied members
v Replacing selected members

When moving or copying a data set group or a volume containing
password-protected data sets, you must provide the password each time a data set
is opened or scratched.

IEHMOVE always moves or copies any user labels associated with an input data
set. You cannot use your own label processing routine with IEHMOVE.

A move or copy operation results in: a moved or copied data set; no action; or an
unloaded version of the source data set.

Note: If IEHMOVE is unable to successfully move or copy specified data, it tries to
reorganize the data and place it on the specified output device. The
reorganized data (called an unloaded data set) is a sequential data set

© Copyright IBM Corp. 1979, 2002 267

consisting of 80-byte blocked records that contain the source data and
control information for subsequently reconstructing the source data as it
originally existed. These results depend upon the compatibility of the source
and receiving volumes with respect to:

v Size of the volumes
v Allocation of space on the receiving volume
v Data set organization (sequential, partitioned, or BDAM)
v Movability of the source data set

Considering Volume Size Compatibility
When using partitioned or sequential data set organization, two volumes are
compatible with respect to size if the source record size does not exceed the track
size of the receiving volume.

When using BDAM data set organization, two volumes are compatible with respect
to size if the track capacity of the source volume does not exceed the receiving
track capacity of the receiving volume. BDAM data sets moved or copied to a
smaller device type or tape are unloaded. If you wish to load an unloaded data set,
it must be loaded to the same device type from which it was originally unloaded.

Table 47 shows the results of move and copy operations when the receiving volume
is a DASD volume that is compatible in size with the source volume. The
organization of the source data set is shown along with the characteristics of the
receiving volume.

Table 47. Move and Copy Operations—DASD Receiving Volume with Size Compatible with
Source Volume

Receiving Volume
Characteristics

Sequential Data Sets Partitioned Data
Sets

BDAM Data Sets

Space allocated by
IEHMOVE (movable
data)

Moved or copied Moved or copied Moved or copied

Space allocated by
IEHMOVE
(unmovable data)

Moved or copied Moved or copied No action

Space previously
allocated, as yet
unused

Moved or copied Moved or copied No action

Space previously
allocated, partially
used

No action Moved or copied
(merged)

No action

Table 48 shows the results of move and copy operations when the receiving volume
is a DASD volume that is not compatible in size with the source volume. The
organization of the source data set is shown along with the characteristics of the
receiving volume.

Table 48. Move and Copy Operations—DASD Receiving Volume with Size Incompatible with
Source Volume

Receiving Volume
Characteristics

Sequential Data Sets Partitioned Data
Sets

BDAM Data Sets

Space allocated by
IEHMOVE

Unloaded Unloaded Unloaded

IEHMOVE

268 z/OS V2R13.0 DFSMSdfp Utilities

Table 48. Move and Copy Operations—DASD Receiving Volume with Size Incompatible with
Source Volume (continued)

Receiving Volume
Characteristics

Sequential Data Sets Partitioned Data
Sets

BDAM Data Sets

Space previously
allocated, as yet
unused

Unloaded Unloaded No action

Space previously
allocated, partially
used

No action No action No action

Table 49 shows the results of move and copy operations when the receiving volume
is not a DASD volume. The organization of the source data set is shown with the
characteristics of the receiving volume.

Table 49. Move and Copy Operations—Non-DASD Receiving Volume

Receiving Volume
Characteristics

Sequential Data Sets Partitioned Data
Sets

BDAM Data Sets

Movable data Moved or copied Unloaded Unloaded

Unmovable data Unloaded Unloaded No action

Allocating Space for a Moved or Copied Data Set
Space can be allocated for a data set on a receiving volume either by you (through
the use of DD statements) or by IEHMOVE in the IEHMOVE job step.

If the source data is unmovable (that is, if it contains location-dependent code), you
should allocate space on the receiving volume using absolute track allocation to
ensure that the data set is placed in the same relative location on the receiving
volume as it was on the source volume. Unmovable data can be moved or copied if
space is allocated by IEHMOVE, but the data may not be in the same location on
the receiving volume as it was on the source volume.

When data sets are to be moved or copied between unlike DASD devices, a
secondary allocation should be made to ensure that ample space is available on
the receiving volume.

Space for a new data set should not be allocated by you when a BDAM data set is
to be moved or copied, not unloaded, because IEHMOVE cannot determine if the
new data set is empty.

If IEHMOVE performs the space allocation for a new data set, the space
requirement information of the old data set (if available) is used. This space
requirement information is obtained from the DSCB of the source data set, if it is on
a DASD volume, or from the control information in the case of an unloaded data
set.

If space requirement information is available, IEHMOVE uses this information to
derive an allocation of space for the receiving volume, taking into account the
differences in device characteristics, such as track capacity and overhead factors.
However, when data sets with variable or undefined record formats are being
moved or copied between unlike DASD devices, no assumption can be made about
the space that each individual record needs on the receiving device.

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 269

In general, when variable or undefined record formats are to be moved or copied,
IEHMOVE tries to allocate sufficient space. This can cause too much space to be
allocated under the following circumstances:

v When moving or copying from a device with a relatively large block overhead to
a device with a smaller block overhead, the blocks being small in relation to the
block size.

v When moving or copying from a device with a relatively small block overhead to
a device with a larger block overhead, the blocks being large in relation to the
block size.

BDAM data sets with variable or undefined record formats always have the same
amount of space allocated by IEHMOVE. This practice preserves any relative track
addressing system that may exist within the data sets.

If a sequential data set, which is not an unloaded data set, on a non-DASD volume
is to be moved or copied to a DASD volume, and space attributes are not available
through a previous allocation, IEHMOVE makes a default space allocation. The
default allocation consists of a primary allocation of 72,500 bytes of DASD storage
(data and gaps) and up to 15 secondary allocations of 36,250 bytes each.

Space cannot be previously allocated for a partitioned data set that is to be
unloaded unless the SPACE parameter in the DD statement making the allocation
implies sequential organization. BDAM data sets should not be previously allocated
because IEHMOVE cannot determine if they are empty or not.

If a move or copy operation is unsuccessful, the source data remains intact.

If a move or copy operation is unsuccessful and space was allocated by IEHMOVE,
all data associated with that operation is scratched from the receiving DASD
volume. If the receiving volume was tape, it will contain a partial data set.

If a move or copy operation is unsuccessful and space was previously allocated, no
data is scratched from the receiving volume. If, for example, IEHMOVE moved 104
members of a 105-member partitioned data set and encountered an input/output
error while moving the 105th member:

v The entire partitioned data set is scratched from the receiving volume if space
was allocated by IEHMOVE.

v No data is scratched from the receiving volume if space was previously allocated.
In this case, after determining the nature of the error, you need move only the
105th member into the receiving partitioned data set.

If a data set that has only user trailer labels is to be moved from a tape volume to a
DASD volume, space must be previously allocated on the DASD volume to ensure
that a track is reserved to receive the user labels.

Reblocking Data Sets
Data sets with fixed or variable records can be reblocked to a different block size by
previously allocating the desired block size on the receiving volume. No reblocking
can be performed when loading or unloading. Also, no reblocking can be performed
on data sets with variable spanned or variable blocked spanned records.

When moving or copying data sets with undefined record format and reblocking to a
smaller block size (that is, transferring records to a device with a track capacity

IEHMOVE

270 z/OS V2R13.0 DFSMSdfp Utilities

smaller than the track capacity of the original device), you must make the block size
for the receiving volume equal to or larger than the size of the largest record in the
data set being moved or copied.

When copying data sets with undefined record format to a device with a larger track
capacity, IEHMOVE will not reblock the output data set to a larger block size.
IEHMOVE simply copies the source data set to the target data set.

However, if the target data set is preallocated with a larger block size than the
source data set, the data set becomes unusable because the source block size is
used during the copy.

Blocked format data sets that do not contain user data TTRNs or keys can be
reblocked or unblocked by including the proper keyword subparameters in the DCB
operand of the DD statement used to previously allocate space for the data set.
The new blocking factor must be a multiple of the logical record length originally
assigned to the data set. For a discussion of user data TTRNs, see z/OS DFSMS:
Using Data Sets.

Using IEHMOVE with RACF®

If the Resource Access Control Facility (RACF*), a component of the Security
Server for OS/390, is active, the following considerations apply:

v You must have valid RACF authorization to access any RACF-defined data sets
with IEHMOVE. ALTER authorization is required to access the source data set
for a MOVE function, as the source data set is scratched. When moving a
volume or group of data sets, you must have adequate access authorization to
all of the RACF-protected data sets on the volume or in the group.

v If you have the RACF ADSP attribute and IEHMOVE is to allocate space for the
receiving data set, that data set will be automatically defined to RACF. If the data
set does not have your userid as the first level qualifier, at least one of the
following conditions must be met:

1. You specify MOVE or COPY with RENAME so that the first level qualifier is
the correct userid,

2. The data set being moved or copied is a group data set and you are
connected to the group with CREATE authority, or

3. You have the OPERATION attribute.

v If COPYAUTH is specified and the input data set is RACF-protected (whether or
not you have the ADSP attribute) and the output data set is not preallocated,
then the receiving data set of a MOVE or COPY operation is given a copy of the
input data set’s RACF protection access list during allocation, governed by the
same restrictions and described above for defining a data set for a user with the
ADSP attribute. You must have ALTER access authorization to the input data set
to either MOVE or COPY using COPYAUTH.

v The temporary work files are allocated with the nonstandard names of
**SYSUT1.T<time>, **SYSUT2.T<time>, and **SYSUT3.T<time>. These names
must be included as valid data set names in the RACF Naming Convention Table
if that option is being used.

Moving or Copying a Data Set
IEHMOVE can be used to move or copy sequential, partitioned, and BDAM data
sets, as follows:

v A sequential data set can be:

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 271

1. Moved from one DASD volume or non-DASD volume to another (or to the
same volume provided that it is a DASD volume), or

2. Copied from one volume to another (or to the same volume provided that the
data set name is changed and the receiving volume is a DASD volume).

v A partitioned data set can be:

1. Moved from one DASD volume to another (or to the same volume), or

2. Copied from one DASD volume to another (or to the same volume provided
that the data set name is changed).

v A BDAM data set can be moved or copied from one DASD volume to another
provided that the receiving device type is the same device type or larger, and
that the record size does not exceed 32K bytes.

Sequential Data Sets
Table 50 shows basic and optional move and copy operations for sequential data
sets.

Table 50. Moving and Copying Sequential Data Sets

Operation Basic Actions Optional Actions

Move Sequential Move the data set. For
DASD, scratch the source
data. For non-cataloged data
sets, update the appropriate
catalog to refer to the moved
data set.

Prevent automatic cataloging
of the moved data set.
Rename the moved data set.

Copy Sequential Copy the data set. The
source data set is not
scratched. The catalog is not
updated to refer to the copied
data set.

Delete the catalog entry for
the source data set. Catalog
the copied data set on the
receiving volume. Rename
the copied data set.

When moving or copying sequential data sets on a direct access device, IEHMOVE
execution time can be reduced by using multiple BSAM buffers for input and output.
For information on how to specify the number of buffers to be used by IEHMOVE,
see “EXEC Statement” on page 280.

Partitioned Data Sets
Table 51 shows basic and optional move and copy operations for partitioned data
sets.

Table 51. Moving and Copying Partitioned Data Sets

Operation Basic Actions Optional Actions

Move Partitioned Move the data set. Scratch
the source data. For
cataloged data sets, update
the appropriate catalog to
refer to the moved data set.

Prevent automatic cataloging
of the moved data set.
Rename the moved data set.
Reallocate directory space, if
the space was allocated by
IEHMOVE during the move.
Merge two or more data sets.
Move only selected members.
Replace members. Unload
the data set.

IEHMOVE

272 z/OS V2R13.0 DFSMSdfp Utilities

Table 51. Moving and Copying Partitioned Data Sets (continued)

Operation Basic Actions Optional Actions

Copy Partitioned Copy the data set. The
source data is not scratched.
The catalog is not updated to
refer to the copied data set.

Delete the catalog entry for
the source data set. Catalog
the copied data set. Rename
the copied data set.
Reallocate directory space,
unless the space previously
allocated is partially used.
Merge two or more data sets.
Copy only selected members.
Replace members. Unload
the data set.

Figure 44 shows a copied partitioned data set. IEHMOVE moves or copies
partitioned members in the order in which they appear in the partitioned directory.
That is, moved or copied members are placed in collating sequence on the
receiving volume. The IEBCOPY utility program (see Chapter 3, “IEBCOPY (Library
Copy) Program” on page 21) can be used to copy data sets whose members are
not to be collated.

Members that are merged into an existing data set are placed, in collating
sequence, after the last member in the existing data set. If the target data set
contains a member with the same name as the data set to be moved, the member
will not be moved or copied unless the REPLACE statement is coded.

Figure 45 shows members from one data set merged into an existing data set.
Members B and F are copied in collating sequence.

Source data set Copied data set

Directory
A B C D

Directory
A B C D

Member
A

Member
A

C

B

D

B

C

D

Figure 44. Partitioned Data Set Before and After an IEHMOVE Copy Operation

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 273

Figure 46 on page 275 shows how members from two data sets are merged into an
existing data set. Members from additional data sets can be merged in a like
manner. Members F, B, D and E from the source data sets are copied in collating
sequence.

Existing data set
prior to merge

Existing data set
after merge

Source data set

Directory
A C G

Directory
A B C F G

Member
A

Member
A

C

B

G G

C

F

Directory
B F

F

B

Figure 45. Merging Two Data Sets Using IEHMOVE

IEHMOVE

274 z/OS V2R13.0 DFSMSdfp Utilities

BDAM Data Sets
When moving or copying a BDAM data set from one device to another device of the
same type, relative track and relative block integrity are maintained.

When moving or copying a BDAM data set to a larger device, relative track integrity
is maintained for data sets with variable or undefined record formats; relative block
integrity is maintained for data sets with fixed record formats.

When moving or copying a BDAM data set to a smaller device or a tape, the data
set is unloaded. An unloaded data set is loaded only when it is moved or copied to
the same device type from which it was unloaded.

BDAM data sets with variable-spanned records can be copied from one DASD
volume to a compatible DASD volume provided that the record size does not
exceed 32K bytes. (See “Considering Volume Size Compatibility” on page 268 for
information on volume compatibility.)

Because a BDAM data set can reside on one to five volumes (all of which must be
mounted during any move or copy operation), it is possible for the data set to span
volumes. However, single variable-spanned records are contained on one volume.

Note:

Directory
A C G

Member
A

C

G

Directory
A B C D E F G

Directory
B F

Directory
D E

D

E

Member
F

B

Member
A

C

G

B

D

E

F

Existing data set
prior to merge

Source data sets

Existing data set
after merge

New members
are placed in collating
sequence after existing
members

Figure 46. Merging Three Data Sets Using IEHMOVE

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 275

Relative track integrity is preserved in a move or copy operation for spanned
records. Moved or copied BDAM data sets occupy the same relative number of
tracks that they occupied on the source device.

If a BDAM data set is unloaded (moved or copied to a smaller device or tape), it
must be loaded back to the same device type from which it was originally unloaded.

When moving or copying variable-spanned records to a larger device, record
segments are combined and respanned if necessary. Because the remaining track
space is available for new records, variable-spanned records are unloaded before
being moved or copied back to a smaller device.

If you wish to create a BDAM data set without using data management BDAM
macros, all data management specifications must be followed. Special attention
must be given to data management specifications for R0 track capacity record
content, segment descriptor words, and the BFTEK=R parameter. For more
information on using data management specifications, see z/OS DFSMS: Using
Data Sets.

When moving or copying a multivolume data set, the secondary allocation for
BDAM data sets should be at least two tracks. (See the “WRITE” macro in z/OS
DFSMS Macro Instructions for Data Sets.)

Multivolume Data Sets
IEHMOVE can be used to move or copy multivolume data sets. To move or copy a
multivolume data set, specify the complete volume list in the VOL=SER parameter
on the DD statement. A maximum of 5 volumes can be specified. The same number
of volumes must be specified for the output data set as existed for the input data
set. If the user wishes to consolidate a multivolume data set so that the data set will
reside on fewer volumes, the output data set must be allocated on the target
volume(s) by the user before moving or copying the data set. To move or copy a
data set that resides on more than one tape volume, specify the volume serial
numbers of all the tape volumes and the sequence numbers of the data set on the
tape volumes in the utility control statement. (You can specify the sequence number
even if the data set to be moved or copied is the only data set on a volume.) To
move or copy a data set to more than one tape volume, specify the volume serial
numbers of all the receiving volumes in the utility control statement.

Unloaded Data Sets
If IEHMOVE is unable to successfully move or copy specified data, it tries to
reorganize the data and place it on the specified output device. The reorganized
data (called an unloaded data set) is a sequential data set consisting of 80-byte
blocked records that contain the source data and control information for
subsequently reconstructing the source data as it originally existed.

When an unloaded data set is moved or copied (via IEHMOVE) to a device that will
support the data in its true form, the data is automatically reconstructed. For
example, if you try to move a partitioned data set to a tape volume, the data is
unloaded to that volume. You can re-create the data set merely by moving the
unloaded data set to a DASD volume.

IEHMOVE

276 z/OS V2R13.0 DFSMSdfp Utilities

Unmovable Data Sets
A data set with the unmovable attribute can be moved or copied from one DASD
volume to another or to the same volume provided that space has been previously
allocated on the receiving volume. Change the name of the data set if move or
copy is to be done to the same volume.

Moving or Copying a Group of Cataloged Data Sets
IEHMOVE can be used to move or copy a group of partitioned, sequential or BDAM
data sets (a “DSGROUP”) that are cataloged in integrated catalog facility and
whose names are qualified by one or more identical names. For example, a group
of data sets qualified by the name A.B can include data sets named A.B.D and
A.B.E, but could not include data sets named A.C.D or A.D.F.

You cannot use IEHMOVE to move or copy a DSGROUP to a volume managed by
the Storage Management Subsystem.

If a group of data sets is moved or copied to magnetic tape, the data sets must be
retrieved one by one by data set name and file-sequence number, or by
file-sequence number for unlabeled or nonstandard labeled tapes.

Access method services can be used to determine the structure of integrated
catalog facility catalogs. For more information, see z/OS DFSMS Access Method
Services.

Table 52 shows basic and optional move and copy operations for a group of
partitioned, sequential or BDAM cataloged data sets.

Table 52. Moving and Copying a Group of Cataloged Data Sets

Operation Basic Actions Optional Actions

Move a group of cataloged
data sets

Move the data set group
(excluding
password-protected data sets)
to the specified volumes.
Scratch the source data sets
(BDAM only). Merging is not
done.

Prevent updating of the
appropriate catalog. Include
password-protected data sets
in the operation. Unload data
sets. If a data set group is
cataloged, you may include or
exclude other data sets
during the operation.

Copy a group of cataloged
data sets

Copy the data set group
(excluding
password-protected data
sets). Source data sets are
not scratched. Merging is not
done.

Include password-protected
data sets in the operation.
Delete catalog entries for the
source data sets. Catalog the
copied data sets on the
receiving volumes. Unload a
data set or sets. If a data set
group is cataloged, you may
include or exclude other data
sets during the operation.

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 277

Moving or Copying a Volume of Data Sets
IEHMOVE can be used to move or copy the data sets of an entire DASD volume to
another volume or volumes. A move operation differs from a copy operation in that
the move operation scratches source data sets, while the copy operation does not.
For both operations, any cataloged entries associated with the source data sets
remain unchanged.

If the source volume contains a SYSCTLG data set, that data set is the last to be
moved or copied onto the receiving volume.

If a volume of data sets is moved or copied to tape, sequential data sets are
moved; partitioned and BDAM data sets are unloaded. The data sets must be
retrieved one by one by data set name and file-sequence number, or by
file-sequence number for unlabeled or nonstandard labeled tapes.

When copying a volume of data sets, you have the option of cataloging all source
data sets in a SYSCTLG data set on a receiving volume. However, if a SYSCTLG
data set exists on the source volume, error messages indicating that an inconsistent
index structure exists are generated when the source SYSCTLG entries are merged
into the SYSCTLG data set on the receiving volume.

The move-volume feature does not merge partitioned data sets. If a data set on the
volume to be moved has a name identical to a data set name on the receiving
volume, the data set is not moved or merged onto the receiving volume.

The copy-volume feature does merge partitioned data sets. If a data set on the
volume to be copied has a name identical to a data set name on the receiving
volume, the data set is copied and merged onto the receiving volume.

Table 53 shows basic and optional move and copy operations for a volume of data
sets.

Table 53. Moving and Copying a Volume of Data Sets

Operation Basic Actions Optional Actions

Move a volume of data sets Move all data sets not
protected by a password to
the specified DASD volumes.
Scratch the source data sets
for DASD volumes.

Include password-protected
data sets in the operation.
Unload the data sets.

COPY a volume of data sets Copy all data sets not
protected by a password to
the specified DASD volume.
The source data sets are not
scratched.

Include password-protected
data sets in the operation.
Catalog all copied data sets .
Unload the data sets.

Input and Output
IEHMOVE uses the following input:

v One or more partitioned, sequential or BDAM data sets, which contain the data
to be moved, copied, or merged into an output data set.

v A control data set, which contains utility control statements that are used to
control the functions of the program.

v A work data set, which is a work area used by IEHMOVE.

IEHMOVE

278 z/OS V2R13.0 DFSMSdfp Utilities

IEHMOVE does not support VIO (virtual input/output) data sets.

IEHMOVE produces the following output:

v An output data set, which is the result of the move, copy, or merge operation.

v A message data set, that contains informational messages (for example, the
names of moved or copied data sets) and error messages, if applicable.

If IEHMOVE is invoked from an application program, you can dynamically allocate
the devices and data sets by issuing SVC 99 before calling IEHMOVE.

See Appendix A for IEHMOVE return codes.

Control
IEHMOVE is controlled by job and utility control statements. The job control
statements are used to process or load the program, define the devices and
volumes used and produced by IEHMOVE, and prevent data sets from being
deleted inadvertently.

IEHMOVE is an APF-authorized program. This means that if another program calls
it, that program must also be APF-authorized. To protect system integrity, the calling
program must follow the sytem integrity requirements described inz/OS MVS
Programming: Assembler Services Guide.

Utility control statements are used to control the functions of the program and to
define those data sets or volumes that are to be used.

Job Control Statements
Table 54 shows the job control statements for IEHMOVE.

Table 54. IEHMOVE Job Control Statements

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEHMOVE) or, if the job control
statements reside in a procedure library, the procedure name. This
statement can also include optional parameter information.

SYSPRINT DD Defines a sequential data set for messages. The data set can be
written onto a system output device, a magnetic tape volume, or a
direct access volume.

SYSUT1 DD Defines a volume on which three work data sets required by
IEHMOVE are allocated.

anyname DD Defines a permanently mounted or mountable DASD volume. At least
one permanently mounted volume must be identified.

tape DD Defines a mountable tape device.

SYSIN DD Defines the control data set. The data set, which contains utility
control statements, usually follows the job control statements in the
input stream; however, it can be defined either as a sequential data
set or as a member of a procedure library.

Since SYSUT2 and SYSUT3 are reserved for IEHMOVE, it is not recommended to
use them in an IEHMOVE job step.

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 279

EXEC Statement
The EXEC statement for IEHMOVE can contain parameter information that is used
by the program to allocate additional work space or control line density on output
listings. You can also code the REGION subparameter to control the region size
that IEHMOVE operates in when you are moving or copying sequential data sets.

The syntax of the EXEC statement is:

//[stepname] EXEC PGM=IEHMOVE

[,PARM='[POWER=n] [,LINECNT=xx]']
[,REGION={nK|nM}]

where:

PGM=IEHMOVE
specifies that you want to run IEHMOVE.

PARM='[POWER=n] [,LINECNT=xx]'
specifies optional parameter information to be passed to IEHMOVE.

POWER=n
specifies that you want the space allocated to the work areas IEHMOVE will
use to be increased n times. N may be from 1 to 999. You should use this
parameter when moving or copying large partitioned data sets.

If a partitioned data set has more than 750 members, POWER should be
coded. The progression for the value of n is:
v POWER=2 when 750 to 1500 members are to be moved or copied.
v POWER=3 when 1501 to 2250 members are to be moved or copied.
v POWER=4 when 2251 to 3000 members are to be moved or copied.

For example, if POWER=2, three areas of 26, 26, and 52 contiguous tracks
on a 3380 must be available.

LINECNT=xx
specifies how many lines per page will be printed in the listing of the
SYSPRINT data set. Xx can be a two-digit number from 04 through 99.

For more information on coding PARM keyword values, see z/OS MVS JCL
Reference.

REGION={nK|nM}
specifies the region size you want IEHMOVE to run in when you are moving or
copying sequential data sets. You can use this parameter to enhance IEHMOVE
performance, but it is not a required parameter for moving or copying sequential
data sets.

The minimum number of buffers required for enhanced IEHMOVE copy
performance is 4: two for input and two for output. The size of an input buffer is
computed as:
(INPUT BLOCKSIZE + KEY LENGTH) + 24

The size of an output buffer is computed as:
(OUTPUT BLOCKSIZE + KEY LENGTH) + 40

IEHMOVE

280 z/OS V2R13.0 DFSMSdfp Utilities

The maximum number of input buffers used by IEHMOVE is two times the
number of buffers that will fit in the input track size. The maximum number of
output buffers used by IEHMOVE is two times the number of buffers that will fit
in the output track size.

If space for the minimum of four buffers is not available, a single buffer is used
and message IEH476I is issued.

You can code this parameter in the JOB statement rather than the EXEC
statement, if you prefer. For details on how to code the REGION parameter, see
z/OS MVS JCL Reference.

Message IEH477I, describing the number and size of your buffers, will be
issued each time multiple BSAM buffers are used. If you do not specify your
region size to achieve the maximum number of buffers, the last line of the
message will indicate the amount by which the value of the REGION parameter
should be increased in order to obtain the maximum number of buffers.

The execution time of an IEHMOVE move or copy operation will vary with the
number of buffers available, the size of the data sets, and the block size.

SYSPRINT DD Statement
The block size for the SYSPRINT data set must be a multiple of 121. Any blocking
factor can be specified.

SYSUT1 DD Statement
The SYSUT1 DD statement defines a DASD volume that IEHMOVE uses for its
work areas. The SYSUT1 DD statement must be coded:

//SYSUT1 DD UNIT=xxxx,VOL=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume serial
number. The DISP=OLD specification prevents the inadvertent deletion of a data
set. The SYSUT1 DD statement cannot define an SMS-managed volume.

At least three utility work areas of 13, 13, and 26 contiguous tracks, respectively,
must be available for work space on the volume defined by the SYSUT1 DD
statement. (This figure is based on a 3380 being the work volume. If a direct
access device other than a 3380 is used, an equivalent amount of space must be
available.)

IEHMOVE automatically calculates and allocates the amount of space needed for
the work areas. No SPACE parameter, therefore, should be coded in the SYSUT1
DD statement. However, you can increase the size of the work areas by coding the
POWER value in the PARM parameter of the EXEC statement.

Prior space allocations can be made by specifying a dummy execution of the
IEHPROGM utility program before the execution of IEHMOVE.

Note: IEHMOVE uses nonstandard data set names to allocate its work data sets.
The names start with one or more asterisks. These work data sets are
deleted at completion of the requested functions.

However, if IEHMOVE does not end normally (abend, system malfunction, and so
forth), these work data sets remain on the DASD volume and cannot be deleted
with any IBM utility. You can delete them by executing an IEFBR14 job and
specifying their data set names in single quotes with DISP=(OLD,DELETE).

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 281

anyname DD Statement
A DD statement must be included for each permanently mounted or mountable
volume referred to in the job step. These DD statements are used to allocate
devices.

The DD statement should be coded:
//anyname1 DD UNIT=xxxx,VOL=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume serial
number. The DISP=OLD specification prevents the inadvertent creation of a data
set.

You can also code the DSN parameter to identify a volume, if the data set you
name resides on that volume. When unloading a data set from one DASD volume
to another, this parameter is required for the data set to be unloaded. An unloaded
data set on a DASD volume can only be loaded to the same device type from
which it was unloaded.

For mountable volumes, when the number of volumes to be processed is greater
than the number of devices defined by DD statements, there must be an indication
(in the applicable DD statements) that multiple volumes are to be processed. This
indication can be in the form of deferred mounting, as follows:

//anyname2 DD UNIT=(xxxx,,DEFER),VOL=(PRIVATE,...),
// DISP=(...,KEEP)

Here, the PRIVATE indication in the VOL parameter is optional. Unit affinity cannot
be used on DD statements defining mountable devices.

tape DD Statement
The tape DD statement can be coded:

//tape DD DSNAME=xxxxxxxx,UNIT=xxxx,VOLUME=SER=xxxxxx,
// DISP=(...,KEEP),LABEL=(...,...),DCB=(TRTCH=C,DEN=x)

When unloading a data set from one DASD volume to another, the data set name
(DSN=) must be coded on the DD statement for the data set to be unloaded. An
unloaded data set on a DASD volume can only be loaded to the same device type
from which it was unloaded.

A utility control statement parameter refers to the tape DD statement for label and
mode information.

The date on which a data set is moved or copied to a magnetic tape volume is
automatically recorded in the HDR1 record of a standard tape label if a TODD
parameter is specified in a utility control statement. An expiration date can be
specified by including the EXPDT or RETPD subparameters of the LABEL keyword
in the DD statement referred to by a TODD parameter.

A sequence number, for a data set on a tape volume, or a specific device number
(for example, unit address 190), must be specified on a utility control statement
instead of a reference to a DD statement. To move or copy a data set from or to a
tape volume containing more than one data set, specify the sequence number of
the data set in the utility control statement. To move or copy a data set from or to a
specific device, specify the unit address (rather than a group name or device type)
in the utility control statement. To copy to a unit record or unlabeled tape volume,
specify any standard name or number in the utility control statement.

IEHMOVE

282 z/OS V2R13.0 DFSMSdfp Utilities

The tape DD statement can be used to communicate DCB attributes of data sets
residing on tape volumes that do not have standard labels to IEHMOVE. If no DCB
attributes are specified, an undefined record format and a block size of 2560 are
assumed. However, in order to recognize unloaded data sets on an unlabeled tape
volume, the DCB attributes must be specified as follows:
DCB=(RECFM=FB,LRECL=80,BLKSIZE=800).

In no case can the block size exceed 32760 bytes.

SYSIN DD Statement
The block size for the SYSIN data set must be a multiple of 80. Any blocking factor
up to a block size of 32760 bytes can be specified.

Utility Control Statements
IEHMOVE is controlled by the utility control statements shown in Table 55.

Table 55. IEHMOVE Utility Control Statements

Statement Use

MOVE DSNAME Moves a data set.

COPY DSNAME Copies a data set.

MOVE DSGROUP Moves a group of cataloged partitioned, sequential or BDAM
cataloged data sets.

COPY DSGROUP Copies a group of cataloged partitioned, sequential or BDAM
cataloged data sets.

MOVE PDS Moves a partitioned data set.

COPY PDS Copies a partitioned data set.

MOVE VOLUME Moves a volume of data sets.

COPY VOLUME Copies a volume of data sets.

In addition, there are four subordinate control statements that can be used to
modify the effect of a MOVE DSGROUP, COPY DSGROUP, MOVE PDS, COPY
PDS, MOVE CATALOG, or COPY CATALOG operation. The subordinate control
statements are:

v INCLUDE statement, which is used to enlarge the scope of a MOVE PDS, or
COPY PDS statement by including a member or data set not explicitly included
by the statement it modifies.

v EXCLUDE statement, which is used with a MOVE PDS, COPY PDS, statement
to exclude a member from a move or copy operation.

v REPLACE statement, which is used with a MOVE PDS or COPY PDS statement
to exclude a member from a move or copy operation and to replace it with a
member from another partitioned data set.

v SELECT statement, which is used with MOVE PDS or COPY PDS statements to
select members to be moved or copied and, optionally, to rename the specified
members.

Continuation requirements for utility control statements are described in “Continuing
Utility Control Statements” on page 8.

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 283

MOVE DSNAME and COPY DSNAME Statements
The MOVE DSNAME statement is used to move a data set. The source data set is
scratched. If the data set is cataloged, the catalog is automatically updated unless
UNCATLG and FROM are specified.

The COPY DSNAME statement is used to copy a data set. The source data set, if
cataloged, remains cataloged unless UNCATLG or CATLG is specified without the
RENAME and FROM parameters. The source data set is not scratched in a copy.

The syntax of the MOVE DSNAME and COPY DSNAME statements is:

[label] {MOVE| DSNAME=name

COPY} ,TO=device={serial|(list)}
[,{FROM=device={serial| (list)}|
[,UNCATLG]
[,CATLG]
[,RENAME=name]
[,FROMDD=ddname]
[,TODD=ddname]
[,UNLOAD]
[,COPYAUTH]

Note: CATLG may only be coded with COPY DSNAME

where:

DSNAME=name
specifies the fully qualified name of the data set to be moved or copied.

TO=device={serial| (list)}
specifies the device type and volume serial number of the volume or volumes to
which the specified data set is to be moved or copied. If the data set resides on
more than one volume, code the list of volume serial numbers in parentheses,
separating the numbers with commas.

FROM=device={serial| (list)}
specifies the device number or device type and serial number of the volume on
which the data set resides. If the data set resides on more than one volume,
enclose the list of serial numbers within parentheses, separating the numbers
with commas.

If the data set is cataloged, do not code “FROM”.

If you want to specify a specific device rather than device type, code the device
number in the device subparameter.

When FROM is used with MOVE DSNAME, the catalog will not be updated.

If the data set resides on a tape device, the serial number must be enclosed in
parentheses, and the data set sequence number must be included as follows:
“(serial,sequence number)”.

If FROM is omitted, the data set is assumed to be cataloged in the integrated
catalog facility catalog /JOBCAT/STEPCAT catalog.

UNCATLG
specifies that the catalog entry pertaining to the source data set is to be
removed. This parameter should be used only if the source data set is
cataloged. If the volume is identified by FROM, UNCATLG is ignored. Alias
entries in catalogs for the source data set is lost and can be replaced with

IEHMOVE

284 z/OS V2R13.0 DFSMSdfp Utilities

access method services if the data set is later cataloged. For more information,
see the DELETE command in z/OS DFSMS Access Method Services. For a
MOVE operation, UNCATLG inhibits cataloging of the output data set.

CATLG
specifies that the copied data sets are to be cataloged as described below:

1. The cataloging is done in the integrated catalog facility or
/JOBCAT/STEPCAT catalog.

2. If the RENAME and FROM parameters are omitted, the entries for the
source data sets are deleted from the appropriate catalog to permit the
copied data sets to be recataloged.

For proper results, this control statement option must be used instead of
specifying the “CATLG” option in the “DISP” parameter in the DD statements.

CATLG may only be coded with COPY DSNAME.

RENAME=name
specifies that the data set is to be renamed, and indicates the new name.

FROMDD=ddname
specifies the name of the DD statement from which DCB and LABEL
information, except data set sequence number, can be obtained for input data
sets on tape volumes. The FROMDD operand can be omitted, if the data set
has standard labels and resides on a 9-track tape volume.

TODD=ddname
specifies the name of a DD statement from which DCB (except RECFM,
BLKSIZE and LRECL) and LABEL (except data set sequence number)
information for an output data set on a tape volume can be obtained.

The DD statement describes the mode and label information to be used when
creating the output data set on tape volumes. Record format, blocksize and
logical record length information, if coded, is ignored.

When UNLOAD is specified, it describes the mode and label information to be
used when unloading the data set. Record format, blocksize and logical record
length information, if coded, must specify (RECFM=FB, BLKSIZE=800,
LRECL=80).

TODD must be specified in the control statement when an expiration data
(EXPDT) or retention period (RETPD) is to be created or changed.

The TODD parameter can be omitted for 9-track tapes with standard labels and
default density for the unit type specified.

UNLOAD
specifies that the data set is to be unloaded to the receiving volumes.

COPYAUTH
specifies that the receiving data set is to be given the same access list as the
input data set, if the input data set is RACF protected and the output data set is
not preallocated.

MOVE DSGROUP and COPY DSGROUP Statements
The MOVE DSGROUP statement is used to move groups of data sets whose
names are partially qualified by one or more identical names. The data sets may be
cataloged on several catalogs. Source data sets are scratched. Data set groups to
be moved must reside on DASD volumes. Only data sets that could be moved by
MOVE DSNAME or MOVE PDS can be moved by MOVE DSGROUP. Alias entries

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 285

in catalogs for the data sets are lost and can be replaced with access method
services. For more information, see z/OS DFSMS Access Method Services.

The COPY DSGROUP statement is used to copy groups of data sets whose names
are partially qualified by one or more identical names. The data sets may be
cataloged on several catalogs. Only data sets that can be copied with COPY
DSNAME or COPY PDS can be copied with COPY DSGROUP. Data set groups to
be copied must reside on DASD volumes.

MOVE DSGROUP operations cause the catalog to be updated automatically unless
UNCATLG is specified. COPY DSGROUP operations leave the source data sets
cataloged unless UNCATLG or CATLG is specified without the RENAME and
FROM parameters.

The syntax of the and COPY DSGROUP statements is:

[label] {MOVE| DSGROUP[=name]

COPY} ,TO=device={serial|(list)}
[,PASSWORD]
[,UNCATLG]
[,CATLG]
[,TODD=ddname]
[,UNLOAD]
[,COPYAUTH]

Note: CATLG may only be coded with COPY DSGROUP

where:

DSGROUP=[name]
specifies the cataloged data sets to be moved or copied. If name is a fully
qualified data set name, only that data set is not moved or copied. If name is
one or more qualifiers, but not fully qualified, all data sets whose names are
qualified by name are moved or copied. If name is omitted, all data sets whose
names are found in the searched catalog are moved or copied.

TO=device={serial|(list)}
specifies the device type and volume serial number of the volume or volumes to
which the specified group of data sets is to be moved or copied. If the group of
data sets is on more than one volume, code the list of serial numbers in
parentheses, separating the numbers with commas.

PASSWORD
specifies that password protected data sets are included in the operation. This
is not VSAM password protection, but the data set password scheme. This is
described in the z/OS DFSMSdfp Advanced Services. If PASSWORD is
omitted, only data sets that are not protected are copied or moved.

UNCATLG
specifies that the catalog entries pertaining to the source data sets are to be
removed. This parameter should be used only if the source data set is
cataloged. If the volume is identified by FROM, UNCATLG is ignored. Alias
entries in integrated catalog facility for the source data sets are lost and can be
replaced with access method services if the data sets are later cataloged. For
more information, see z/OS DFSMS Access Method Services. For a MOVE
operation, UNCATLG inhibits cataloging of the output data sets.

IEHMOVE

286 z/OS V2R13.0 DFSMSdfp Utilities

CATLG
specifies that the cataloging is done in the integrated catalog facility or
/JOBCAT/STEPCAT catalog.

For proper results, this control statement option must be used instead of
specifying the “CATLG” option in the “DISP” parameter in the DD statements.

CATLG may only be coded with COPY DSGROUP.

TODD=ddname
specifies the name of a DD statement from which DCB (except RECFM,
BLKSIZE and LRECL) and LABEL (except data set sequence number)
information for output data sets on tape volumes can be obtained.

The DD statement describes the mode and label information to be used when
creating output data sets on tape volumes. Record format, blocksize and logical
record length information, if coded, is ignored.

When UNLOAD is specified, it describes the mode and label information to be
used when creating unloaded versions of data sets on tape volumes. Record
format, blocksize and logical record length information, if coded, must specify
(RECFM=FB, BLKSIZE=800, LRECL=80).

TODD must be specified in the control statement when an expiration data
(EXPDT) or retention period (RETPD) is to be created or changed.

The TODD parameter can be omitted for 9-track tapes with standard labels and
default density for the unit type specified.

UNLOAD
specifies that the data sets are to be unloaded to the receiving volumes.

COPYAUTH
specifies that the receiving data set is to be given the same access list as the
input data set, if the input data set is RACF protected and the output data set is
not preallocated.

MOVE PDS and COPY PDS Statements
The MOVE PDS statement is used to move partitioned data sets. When used in
conjunction with INCLUDE, EXCLUDE, REPLACE, or SELECT statements, the
MOVE PDS statement can be used to merge selected members of several
partitioned data sets or to delete members. The source data set is scratched.

The COPY PDS statement is used to copy partitioned data sets. When used in
conjunction with INCLUDE, EXCLUDE, REPLACE, or SELECT statements, the
COPY PDS statement can be used to merge selected members of several
partitioned data sets or to delete members.

If IEHMOVE is used to allocate space for an output partitioned data set, the MOVE
PDS or COPY PDS statements can be used to expand a partitioned directory.

If the receiving volume contains a partitioned data set with the same name, the two
data sets are merged.

MOVE PDS causes the appropriate catalog to be updated automatically unless
UNCATLG and FROM are specified. COPY PDS leaves the source data set
cataloged unless UNCATLG or CATLG is specified without the RENAME and
FROM parameters.

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 287

The syntax of the MOVE PDS and COPY PDS statements is:

[label] {MOVE| PDS=name

COPY} ,TO=device={serial|list}
[,{FROM=device=serial}]
[,EXPAND=nn]
[,UNCATLG]
[,CATLG]
[,RENAME=name]
[,FROMDD=ddname]
[,TODD=ddname]
[,UNLOAD]
[,COPYAUTH]

Note: CATLG may only be coded with COPY PDS

where:

PDS=name
specifies the fully qualified name (that is, the name with all its qualifiers, if any)
of the partitioned data set to be moved or copied.

TO=device={serial|list}
specifies the device type and volume serial number of the volume to which the
partitioned data set is to be moved or copied. If you are unloading the
partitioned data set to multiple tape volumes, code the list of serial numbers in
parentheses, separating the numbers with commas.

FROM=device=serial
specifies the device type and serial number of the volume on which the data set
resides.

If the data set is cataloged, do not code “FROM”.

If you want to specify a specific device rather than device type, code the device
number in the device subparameter.

When FROM is used with MOVE PDS, the catalog will not be updated.

If FROM is omitted, the data set is assumed to be cataloged in the integrated
catalog facility catalog or /JOBCAT/STEPCAT catalog.

EXPAND=nn
specifies the decimal number (up to 99) of 256-byte records to be added to the
directory of the specified partitioned data set. For COPY, EXPAND cannot be
specified if space is previously allocated. For MOVE, EXPAND will be ignored if
space is previously allocated.

UNCATLG
specifies that the catalog entry pertaining to the source partitioned data set is to
be removed. This parameter should be used only if the source data set is
cataloged. If the volume is identified by FROM, UNCATLG is ignored. Alias
entries in catalogs for the source data set is lost and can be replaced with
access method services if the data set is later cataloged. For more information,
see z/OS DFSMS Access Method Services. For a MOVE operation, UNCATLG
inhibits cataloging of the output data set.

CATLG
specifies that the copied data sets are to be cataloged as described below.

1. The cataloging is done in the integrated catalog facility or
/JOBCAT/STEPCAT catalog.

IEHMOVE

288 z/OS V2R13.0 DFSMSdfp Utilities

2. If the RENAME and FROM parameters are omitted, the entries for the
source data sets are deleted from the appropriate catalog to permit the
copied data sets to be recataloged.

For proper results, this control statement option must be used instead of
specifying the “CATLG” option in the “DISP” parameter in the DD statements.

CATLG may only be coded with COPY PDS.

RENAME=name
specifies that the data set is to be renamed, and indicates the new name.

FROMDD=ddname
specifies the name of the DD statement from which DCB and LABEL
information, except data set sequence number, can be obtained for input data
sets on tape volumes. The tape data set must be an unloaded version of a
partitioned data set. The FROMDD operand can be omitted if the data set has
standard labels and resides on a 9-track tape volume.

TODD=ddname
specifies the name of a DD statement from which DCB (except RECFM,
BLKSIZE and LRECL) and LABEL (except data set sequence number)
information for the output data set can be obtained, when the data set is being
unloaded to tape. Record format, blocksize and logical record length
information, if coded, must specify (RECFM=FB, BLKSIZE=800, LRECL=80).

TODD must be specified in the control statement when an expiration data
(EXPDT) or retention period (RETPD) is to be created or changed.

The TODD parameter can be omitted for 9-track tapes with standard labels and
default density for the unit type specified.

UNLOAD
specifies that the data set is to be unloaded to the receiving volumes.

COPYAUTH
specifies that the receiving data set is to be given the same access list as the
input data set, if the input data set is RACF protected and the output data set is
not preallocated.

MOVE VOLUME and COPY VOLUME Statements
The MOVE VOLUME statement is used to move all the data sets residing on a
specified volume. The COPY VOLUME statement is used to copy all the data sets
residing on a specified volume.

Any catalog entries associated with the data sets remain unchanged. Data sets to
be moved or copied must reside on DASD volumes.

The syntax of the MOVE VOLUME and COPY VOLUME statements is:

[label] {MOVE| VOLUME=device=serial

COPY} ,TO=device=list
[,PASSWORD]
[,CATLG]
[,TODD=ddname]
[,UNLOAD]
[,COPYAUTH]

Note: CATLG may only be coded with COPY VOLUME

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 289

where:

VOLUME=device=serial
specifies the device type and volume serial number of the source volume.

TO=device=serial
specifies the device type and volume serial number of the volume to which the
volume of data sets is to be moved or copied.

PASSWORD
specifies that password protected data sets are included in the operation. This
is not VSAM password protection, but the OS password scheme. If
PASSWORD is omitted, only data sets that are not protected are copied or
moved.

CATLG
specifies that the copied data sets are to be cataloged.

For proper results, this control statement option must be used instead of
specifying the “CATLG” option in the “DISP” parameter in the DD statements.

CATLG may only be coded with COPY VOLUME.

TODD=ddname
specifies the name of a DD statement from which DCB (except RECFM,
BLKSIZE and LRECL) and LABEL (except data set sequence number)
information for output data sets on tape volumes can be obtained.

The DD statement describes the mode and label information to be used when
creating output data sets on tape volumes. Record format, blocksize and logical
record length information, if coded, is ignored.

When UNLOAD is specified, it describes the mode and label information to be
used when creating unloaded versions of data sets on tape volumes. Record
format, blocksize and logical record length information, if coded, must specify
(RECFM=FB, BLKSIZE=800, LRECL=80).

TODD must be specified in the control statement when an expiration data
(EXPDT) or retention period (RETPD) is to be created or changed.

The TODD parameter can be omitted for 9-track tapes with standard labels and
default density for the unit type specified.

UNLOAD
specifies that the data sets are to be unloaded to the receiving volumes.

COPYAUTH
specifies that the receiving data set is to be given the same access list as the
input data set, if the input data set is RACF protected and the output data set is
not preallocated.

INCLUDE Statement
The INCLUDE statement is used to enlarge the scope of MOVE DSGROUP, COPY
DSGROUP, MOVE PDS, or COPY PDS statements by including a member or a
data set not explicitly defined in those statements. The INCLUDE statement follows
the MOVE or COPY statement whose function it modifies. The record
characteristics of the included partitioned data sets must be compatible with those
of the other partitioned data sets being moved or copied.

IEHMOVE

290 z/OS V2R13.0 DFSMSdfp Utilities

Any number of INCLUDE statements can modify a MOVE or COPY statement. For
a partitioned data set, the INCLUDE statement is invalid when data is unloaded or
when unloaded data is moved or copied. For DSGROUP operations, INCLUDE is
invalid.

The syntax of the INCLUDE statement is:

[label] INCLUDE DSNAME=name

[,MEMBER=membername]
[,{FROM=device={serial| (list)|

where:

DSNAME=name
specifies the fully qualified name of a data set. If used in conjunction with
MOVE or COPY DSGROUP, the named data set is included in the group. If
used in conjunction with MOVE or COPY PDS, either the named partitioned
data set or a member of it (if the MEMBER parameter is specified) is included
in the operation.

MEMBER=membername
specifies the name of one member in the partitioned data set named in the
DSNAME parameter. The named member is merged with the partitioned data
set being moved or copied. Neither the partitioned data set containing the
named member nor the member is scratched.

FROM=device={serial| (list)}
specifies the device type and serial number of the volume on which the data
sets to be included reside. If the data sets reside on more than one volume,
enclose the list of serial numbers within parentheses, separating the numbers
with commas.

If the data set is cataloged, do not code “FROM”.

If you want to specify a specific device rather than device type, code the device
number in the device subparameter.

If the data set resides on a tape device, the serial number must be enclosed in
parentheses, and the data set sequence number must be included as follows:
“(serial,sequence number)”.

EXCLUDE Statement
The EXCLUDE statement is used to restrict the scope of MOVE DSGROUP, COPY
DSGROUP, MOVE PDS, COPY PDS, MOVE CATALOG, or COPY CATALOG
statements by excluding a specific portion of data defined in those statements.

Partitioned data set members excluded from a MOVE PDS operation cannot be
recovered (the source data set is scratched). Any number of EXCLUDE statements
can modify a MOVE PDS or COPY PDS statement.

Source data sets excluded from a MOVE DSGROUP or MOVE CATALOG operation
remain available. Only one EXCLUDE statement can modify a MOVE DSGROUP,
COPY DSGROUP. The EXCLUDE statement is invalid when data is unloaded or
when unloaded data is moved or copied.

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 291

The syntax of the EXCLUDE statement is:

[label] EXCLUDE {DSGROUP=name| MEMBER=membername}

where:

DSGROUP=name
Specifies the cataloged data sets or the catalog entries to be excluded in when
moving a data set group or catalog. If used in conjunction with MOVE
DSGROUP or COPY DSGROUP, all cataloged data sets whose names are
qualified by name are excluded from the operation. If used in conjunction with
MOVE CATALOG or COPY CATALOG, all catalog entries whose names are
qualified by name are excluded from the operation.

MEMBER=membername
specifies the name of a member to be excluded from a MOVE or COPY PDS
operation.

SELECT Statement
The SELECT statement is used with the MOVE PDS or COPY PDS statement to
select members to be moved or copied, and to optionally rename these members.
The SELECT statement cannot be used with either the EXCLUDE or REPLACE
statement to modify the same MOVE PDS or COPY PDS statement. The SELECT
statement is invalid when data is unloaded or when unloaded data is moved or
copied. Because the source data set is scratched, members not selected in a
MOVE PDS operation cannot be recovered.

The syntax of the SELECT statement is:

[label] SELECT MEMBER={(name1 [,name2][,...])|

((name1,newname1) [,(name2,newname2)][,...])}

where:

MEMBER={(name1 [,name2][,...])| ((name1,newname1)
[,(name2,newname2)][,...])}

specifies the names of the members to be moved or copied by a MOVE or
COPY PDS operation, and, optionally, new names to be assigned to the
members.

REPLACE Statement
The REPLACE statement is used with a MOVE PDS or COPY PDS statement to
exclude a member from the operation and replace it with a member from another
partitioned data set. The new member must have the same name as the old
member and must possess compatible record characteristics. Any number of
REPLACE statements can modify a MOVE PDS or COPY PDS statement. The
REPLACE statement is invalid when data is unloaded or when unloaded data is
moved or copied.

The syntax of the REPLACE statement is:

[label] REPLACE DSNAME=name
,MEMBER=name
[,{FROM=device=serial|

IEHMOVE

292 z/OS V2R13.0 DFSMSdfp Utilities

where:

DSNAME=name
specifies the fully qualified name of the partitioned data set that contains the
replacement member.

MEMBER=membername
specifies the name of one member in the partitioned data set named in the
DSNAME parameter. The member replaces an identically named member in the
partitioned data set being moved or copied. Neither the partitioned data set
containing the named member nor the member is scratched.

FROM=device=serial
specifies the device type and serial number of the volume on which the data set
which contains the replacement member resides.

If the data set is cataloged, do not code “FROM”.

If you want to specify a specific device rather than device type, code the device
number in the device subparameter.

IEHMOVE Examples
The following examples illustrate some of the uses of IEHMOVE. 56 can be used
as a quick-reference guide to IEHMOVE examples. The numbers in the “Example”
column refer to the examples that follow.

Table 56. IEHMOVE Example Directory

Operation Data Set
Organization

Device Comments Example

MOVE Data Set Group Disk Data set group is moved. 8

MOVE Partitioned Disk A partitioned data set is moved; a
member from another partitioned data
set is merged with it.

2

MOVE Partitioned Disk A data set is moved to a volume on
which space was previously allocated.

4

MOVE Partitioned Disk Three data sets are moved and
unloaded to a volume on which space
was previously allocated.

5

MOVE Sequential Disk Source volume is demounted after job
completion. Two mountable disks.

1

MOVE Sequential Disk and Tape A sequential data set is unloaded to an
unlabeled 9-track tape volume.

6

MOVE Sequential Disk and Tape Unloaded data sets are loaded from a
single volume.

7

MOVE Volume Disk A volume of data sets is moved to a
disk volume.

3

Examples that use disk or tape in place of actual device names or numbers must
be changed before use. The actual device names or numbers depend on how your
installation has defined the devices to your system.

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 293

Example 1: Move Sequential Data Sets from Disk Volume to Separate
Volumes

In this example, three sequential data sets (SEQSET1, SEQSET2, and SEQSET3)
are moved from a disk volume to three separate disk volumes. Each of the three
receiving volumes is mounted when it is required by IEHMOVE. The source data
sets are not cataloged. Space is allocated by IEHMOVE.

//MOVEDS JOB ...
//STEP1 EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=disk,VOLUME=SER=333333,DISP=OLD
//DD1 DD UNIT=(disk,,DEFER),DISP=OLD,
// VOLUME=(PRIVATE,,SER=(222222))
//DD2 DD UNIT=(disk,,DEFER),DISP=OLD,
// VOLUME=(PRIVATE,,SER=(222333))
//DD3 DD UNIT=(disk,,DEFER),DISP=OLD,
// VOLUME=(PRIVATE,,SER=(222444))
//DD4 DD VOLUME=(PRIVATE,RETAIN,SER=(444444)),
// UNIT=disk,DISP=OLD
//SYSIN DD *

MOVE DSNAME=SEQSET1,TO=disk=222222,FROM=disk=444444
MOVE DSNAME=SEQSET2,TO=disk=222333,FROM=disk=444444
MOVE DSNAME=SEQSET3,TO=disk=222444,FROM=disk=444444

/*

The control statements are discussed below:

v SYSUT1 DD defines the disk device that is to contain the work data set.

v DD1, DD2, and DD3 DD define the receiving volumes.

v DD4 DD defines a device on which the source volume is mounted. Because the
RETAIN subparameter is included, the volume remains mounted until the job has
completed.

v SYSIN DD defines the control data set, which follows in the input stream.

v MOVE moves the source data sets to volumes 222222, 222333, and 222444,
respectively. The source data sets are scratched.

Example 2: Move Partitioned Data Set to Disk Volume and Merge
In this example, a partitioned data set (PARTSET1) is moved to a disk volume. In
addition, a member (PARMEM3) from another partitioned data set (PARTSET2) is
merged with the source members on the receiving volume. The source partitioned
data set (PARTSET1) is scratched. Space is allocated by IEHMOVE.

//MOVEPDS JOB ...
//STEP1 EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=disk,VOLUME=SER=333000,DISP=OLD
//DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//DD2 DD UNIT=disk,VOLUME=SER=222111,DISP=OLD
//DD3 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//DD4 DD UNIT=disk,VOLUME=SER=222333,DISP=OLD
//SYSIN DD *

MOVE PDS=PARTSET1,TO=disk=222333,FROM=disk=222111
INCLUDE DSNAME=PARTSET2,MEMBER=PARMEM3,FROM=disk=222222

/*

The control statements are discussed below:

v SYSUT1 DD defines the disk volume that is to contain the work data set.

v DD1 DD defines the system residence device.

v The DD2, DD3, and DD4 DD statements define devices that are to contain the
two source volumes and the receiving volume.

IEHMOVE

294 z/OS V2R13.0 DFSMSdfp Utilities

v SYSIN DD defines the control data set, which follows in the input stream.

v MOVE defines the source partitioned data set, the volume that contains it, and its
receiving volume.

v INCLUDE includes a member from a second partitioned data set in the operation.

Example 3: Move Volume of Data Sets to Disk Volume
In this example, a volume of data sets is moved to a disk volume. All data sets that
are successfully moved are scratched from the source volume; however, any
catalog entries pertaining to those data sets are not changed. Space is allocated by
IEHMOVE.

//MOVEVOL JOB ...
//STEP1 EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//DD3 DD UNIT=disk,VOLUME=SER=333333,DISP=OLD
//SYSIN DD *

MOVE VOLUME=disk=333333,TO=disk=222222,PASSWORD
/*

The control statements are discussed below:

v SYSUT1 DD defines the device that is to contain the work data set.

v DD1 DD defines the system residence device.

v DD2 DD defines the device on which the receiving volume is mounted.

v DD3 DD defines a device on which the source volume is mounted.

v SYSIN DD defines the control data set, which follows in the input stream.

v MOVE specifies a move operation for a volume of data sets and defines the
source and receiving volumes. This statement also indicates that
password-protected data sets are included in the operation.

Example 4: Move Partitioned Data Set to Allocated Space
In this example, a partitioned data set is moved to a disk volume on which space
has been previously allocated for the data set. The source data set is scratched.

//MOVEPDS JOB ...
//STEP1 EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//DD3 DD UNIT=disk,VOLUME=SER=333333,DISP=OLD
//SYSIN DD *

MOVE PDS=PDSSET1,TO=disk=222222,FROM=disk=333333
/*

The control statements are discussed below:

v SYSUT1 DD defines the device that is to contain the work data set.

v DD1 DD defines the system residence device.

v DD2 DD defines the device on which the receiving volume is to be mounted.

v DD3 DD defines a device on which the source volume is mounted.

v SYSIN DD defines the control data set, which follows in the input stream.

v MOVE specifies a move operation for the partitioned data set PDSSET1 and
defines the source and receiving volumes.

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 295

Example 5: Move and Unload Partitioned Data Sets Volume
In this example, three partitioned data sets are moved from three separate source
volumes to a disk volume. The source data set PDSSET3 is unloaded. (The record
size exceeds the track capacity of the receiving volume.)

//MOVEPDS JOB ...
//STEP1 EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//DD2 DD UNIT=(disk,,DEFER),DISP=OLD,
// VOLUME=(PRIVATE,,SER=(333333))
//DD3 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//SYSIN DD *

MOVE PDS=PDSSET1,TO=disk=222222,FROM=disk=333333
MOVE PDS=PDSSET2,TO=disk=222222,FROM=disk=222222
MOVE PDS=PDSSET3,TO=disk=222222,FROM=disk=444444,UNLOAD

/*

PDSSET1, PDSSET2, and PDSSET3 are already allocated on the receiving
volume. PDSSET3 is allocated as a sequential data set; PDSSET1 and PDSSET2
are allocated as partitioned data sets. Since PDSSET3 is moved to a sequential
data set, it is unloaded.

For a discussion of estimating space allocations, see z/OS DFSMS: Using Data
Sets.

The DCB attributes of PDSSET3 are:
DCB=(RECFM=U,BLKSIZE=5000)

The unloaded attributes are:
DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

The control statements are discussed below:

v SYSUT1 DD defines the device that is to contain the work data set.

v DD1 DD defines the system residence device.

v DD2 DD defines a device on which the source volumes are mounted as they are
required.

v DD3 DD defines a device on which the receiving volume is mounted.

v SYSIN DD defines the control data set, which follows in the input stream.

v MOVE specifies move operations for the partitioned data sets and defines the
source and receiving volumes for each data set.

Example 6: Unload Sequential Data Set onto Unlabeled Tape Volume
In this example, a sequential data set is unloaded onto a 9-track, unlabeled tape
volume (800 bits per inch).

//UNLOAD JOB ...
//STEP1 EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//TAPEOUT DD UNIT=tape,VOLUME=SER=SCRCH2,DISP=OLD,
// DCB=(DEN=2,RECFM=FB,LRECL=80,BLKSIZE=800),
// LABEL=(,NL)
//SYSIN DD *

MOVE DSNAME=SEQSET1,TO=tape=SCRCH2,FROM=disk=222222,TODD=TAPEOUT
/*

IEHMOVE

296 z/OS V2R13.0 DFSMSdfp Utilities

The control statements are discussed below:

v SYSUT1 DD defines the device that is to contain the work data set.

v DD1 DD defines the system residence device.

v DD2 DD defines a device on which the source volume is mounted.

v TAPEOUT DD defines a device on which the receiving tape volume is mounted.
This statement also provides label and mode information.

v SYSIN DD defines the control data set, which follows in the input stream.

v MOVE moves the sequential data set SEQSET1 from a disk volume to the
receiving tape volume. The data set is unloaded. The TODD parameter in this
statement refers to the TAPEOUT DD statement for label and mode information.

Example 7: Load Unloaded Sequential Data Sets from Labeled Tape
In this example, three unloaded sequential data sets are loaded from a labeled,
7-track tape volume (556 bits per inch) to a disk volume. Space is allocated by
IEHMOVE. The example assumes that the disk volume is capable of supporting the
data sets in their original forms.

72
//LOAD JOB ...
//STEP1 EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//TAPESETS DD UNIT=tape,VOLUME=SER=001234,DISP=OLD,
// LABEL=(1,SL),DCB=(DEN=1,TRTCH=C)
//SYSIN DD *

MOVE DSNAME=UNLDSET1,T0=disk=222222, X
FROM=tape=(001234,1),FROMDD=TAPESETS

MOVE DSNAME=UNLDSET2,TO=disk=222222, X
FROM=tape=(001234,2),FROMDD=TAPESETS

MOVE DSNAME=UNLDSET3,TO=disk=222222, X
FROM=tape=(001234,3),FROMDD=TAPESETS

/*

The control statements are discussed below:

v SYSUT1 DD defines the device that is to contain the work data set.

v DD1 DD defines the system residence device.

v DD2 DD defines a device on which the receiving volume is mounted.

v TAPESETS DD defines a device on which the source tape volume is mounted.
DCB information is provided in this statement.

v SYSIN DD defines the control data set, which follows in the input stream.

v MOVE moves the unloaded data sets to the receiving volume.

To move a data set from a tape volume that contains more than one data set, you
must specify the sequence number of the data set in the list field of the FROM
parameter on the utility control statement.

Example 8: Move Cataloged Data Set Group
In this example, the cataloged data set group A.B.C, which comprises data set
A.B.C.X, A.B.C.Y, and A.B.C.Z, ,is moved from two disk volumes onto a third
volume. Space is allocated by IEHMOVE. The catalog is updated to refer to the
receiving volume. The source data sets are scratched.

//MOVEDSG JOB ...
//STEP1 EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A

IEHMOVE

Chapter 14. IEHMOVE (Move System Data) Program 297

//SYSUT1 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//DD3 DD UNIT=disk,VOLUME=SER=333333,DISP=OLD
//DD4 DD UNIT=disk,VOLUME=SER=444444,DISP=OLD
//SYSIN DD *

MOVE DSGROUP=A.B.C,TO=disk=222222
/*

The control statements are discussed below:
v SYSUT1 DD defines the device that is to contain the work data set.
v DD1 DD defines the system residence device.
v DD2 DD defines a device on which the receiving volume is mounted.
v DD3 DD defines a device on which one of the source volumes is mounted.
v DD4 DD defines a device on which one of the source volumes is mounted.
v SYSIN DD defines the control data set, which follows in the input stream.
v MOVE moves the specified data sets to volume 222222.

This example can be used to produce the same result without the use of the DD4
DD statement, using one less mountable disk device. With DD3 and DD4, both of
the source volumes are mounted at the start of the job. With DD3 only, the 333333
volume is mounted at the start of the job. After the 333333 volume is processed,
the utility requests that the operator mount the 444444 volume. In this case, the
DD3 statement is coded:

//DD3 DD UNIT=(disk,,DEFER),DISP=OLD,
// VOLUME=(PRIVATE,,SER=(333333))

IEHMOVE

298 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 15. IEHPROGM (Program Maintenance) Program

IEHPROGM is a system utility that is used to modify system control data and to
maintain data sets at an organizational level. IEHPROGM should only be used by
those programmers who are locally authorized to do so.

IEHPROGM does not support dynamic UCBs while processing data sets that are
password-protected.

You can use IEHPROGM to perform the following tasks:

v Scratch (delete) a data set or a member of a partitioned data set.

v Rename a data set or a member of a partitioned data set.

v Maintain data set passwords.

You must have RACF authority in order to use IEHPROGM. For information on
RACF requirements for the Storage Management Subsystem, see z/OS DFSMSdfp
Storage Administration Reference.

IDCAMS is recommended for use with SMS managed data sets. For information on
IDCAMS, see z/OS DFSMS Access Method Services.

You can write an assembler program to perform any of the IEHPROGM functions.
See z/OS DFSMSdfp Advanced Services and z/OS DFSMS: Using Data Sets.

Scratching or Renaming a Data Set or Member
IEHPROGM can be used to scratch the following data sets from a DASD volume or
volumes:
v Sequential, ISAM, BDAM, or partitioned data sets or PDSE. They can be data

sets that are named by the operating system.
v Members of a partitioned data set.
v A temporary VSAM data set.

A data set is considered scratched when its data set control block is removed from
the volume table of contents (VTOC) of the volume on which it resides; its space is
made available for reallocation.

A member is considered scratched when its name is removed from the directory of
the partitioned data set in which it is contained.

For partitioned data sets that are not PDSEs, the space occupied by a scratched
member is not available for reallocation until the partitioned data set is scratched or
compressed. (When scratching a member of a partitioned data set, all aliases of
that member should also be removed from the directory.)

On SCRATCH requests, the presence of the PURGE or NOPURGE keyword may
be ignored for SMS managed data sets. The use of the PURGE and NOPURGE
keywords is unchanged for non-SMS managed data sets.

v When OVRD_EXPDT(NO) is specified in the IGDSMSxx member of
SYS1.PARMLIB or the OVRD_EXPDT keyword is not specified, the PURGE and
NOPURGE keywords are honored.

v When OVRD_EXPDT(YES) is specified in the IGDSMSxx member of
SYS1.PARMLIB, the PURGE and NOPURGE keywords are not honored. The

© Copyright IBM Corp. 1979, 2002 299

data set is always deleted, whether or not it has expired. This is true only if the
data set is a DASD data set and SMS managed.

When scratching or renaming a data set managed by the Storage Management
Subsystem (SMS), the device type and volumes list on the VOL parameter must
reflect the volume actually allocated to the data set. This is a restriction for both
SMS and non-SMS managed data sets. However, when you specify a volume when
allocating an SMS-managed data set, SMS will not automatically allocate the data
set on that volume.

When scratching an SMS-managed data set, IEHPROGM will uncatalog that data
set.

You should use IDCAMS DELETE VR to delete uncataloged data sets on SMS
managed volumes. If you attempt to scratch and uncataloged data set on an
SMS-managed volume, IEHPROGM will ONLY scratch (an uncatalog) a cataloged
version of the data set, if one exists. When the specified volume in IEHPROGM is
found to be SMS managed, a Catalog locate is used to identify a volume containing
the data. The Catalog locate may return a different volume than specified in
IEHPROGM resulting in the wrong data set to be scratched.

When scratching or renaming a data set the device type and volumes list on the
VOL parameter must reflect the volume actually allocated to the data set.

IEHPROGM will not scratch the data set containing the index for an indexed VTOC.

IEHPROGM can be used to rename a data set or member that resides on a DASD
volume. In addition, the program can be used to change any member aliases.

When renaming an SMS-managed data set, IEHPROGM will uncatalog the data set
and then catalog the data set under its new name in the appropriate catalog. If
uncataloging cannot be done, because of an alias, IEHPROGM will not rename the
data set.

Temporary VSAM data sets can be scratched using SCRATCH VTOC,SYS.

If RACF is active, ALTER authorization is required to scratch a RACF-defined data
set, or rename a data set, and UPDATE authorization is required to scratch or
rename a member of a partitioned data set.

Note: RACF, an IBM security package, will not allow you to rename a data set that
is covered only by a generic profile to a name that will not be covered by a
generic profile because this would allow you to unprotect the data set.

Maintaining Data Set Passwords
IEHPROGM can be used to maintain non-VSAM password entries in the
PASSWORD data set and to alter the protection status of DASD data sets in the
data set control block (DSCB). For a complete description of data set passwords
and the PASSWORD data set, see z/OS DFSMSdfp Advanced Services. This book
also explains why data set passwords provide poor security and why IBM
recommends z/OS Security Server (RACF).

A data set can have one of three types of password protection, as indicated in the
DSCB for DASD data sets and in the tape label for tape data sets. See z/OS

IEHPROGM

300 z/OS V2R13.0 DFSMSdfp Utilities

DFSMSdfp Advanced Services for the contents of the DSCB. For a description of
tape labels, see z/OS DFSMS: Using Magnetic Tapes.

The possible types of data set password protection are:

v No protection, which means that no passwords are required to read or write the
data set.

v Read/write protection, which means that a password is required to read or write
the data set.

v Read-without-password protection, which means that a password is required only
to write the data set; the data set can be read without a password.

If a system data set is password protected and a problem occurs on the data set,
maintenance personnel must be provided with the password in order to access the
data set and resolve the problem.

A data set can have one or more passwords assigned to it; each password has an
entry in the PASSWORD data set. A password assigned to a data set can allow
read and write access, or only read access to the data set.

Figure 47 shows the relationship between the protection status of data set ABC and
the type of access allowed by the passwords assigned to the data set. Passwords
ABLE and BAKER are assigned to data set ABC. If no password protection is set in
the DSCB or tape label, data set ABC can be read or written without a password. If
read/write protection is set in the DSCB or tape label, data set ABC can be read
with either password ABLE or BAKER and can be written with password ABLE. If
read-without-password protection is set in the DSCB or tape label, data set ABC
can be read without a password and can be written with password ABLE; password
BAKER is never needed.

Before IEHPROGM is used to maintain data set passwords, the PASSWORD data
set must reside on the system residence volume. IEHPROGM can then be used to:
v Add an entry to the PASSWORD data set.
v Replace an entry in the PASSWORD data set.
v Delete an entry from the PASSWORD data set.
v Provide a list of information from an entry in the PASSWORD data set.

VTOC To
password
data set

System residence volume

Password BAKER
for data set ABC
allows read access

Password ABLE
for data set ABC
allows read/write

Protection status of data
set ABC contained in
its DSCB or tape label

?No
password
protection

Read/Write
protection

Read without
password
protection

The kind of protection pointed
at allows data set ABC to be:

Read or written on with
no password

Read with
password BAKER

Read or written on with
password ABLE

Written on with
password ABLE

Read with
no password

Figure 47. Relationship between the Protection Status of a Data Set and Its Passwords

IEHPROGM

Chapter 15. IEHPROGM (Program Maintenance) Program 301

Each entry in the PASSWORD data set contains the name of the protected data
set, the password, the protection mode of the password, an access counter, and 77
bytes of optional user data. The protection mode of the password defines the type
of access allowed by the password and whether the password is a control
password or secondary password. The initial password, added to the PASSWORD
data set for a particular data set, is marked in the entry as the control password for
that data set. The second and subsequent passwords added for the same data set
are marked as secondary passwords.

For DASD data sets, IEHPROGM updates the protection status in the DSCB when
a control password entry is added, replaced, or deleted. This permits setting and
resetting the protection status of an existing DASD data set at the same time its
passwords are added, replaced, or deleted. IEHPROGM automatically alters the
protection status of a data set in the DSCB if the following conditions are met:

v The control password for the data set is being added, replaced, or deleted.

v The data set is online.

v The volume on which the data set resides is specified on the utility control
statement, or the data set is cataloged.

v The data set is not allocated within the IEHPROGM job.

For tape data sets, IEHPROGM cannot update the protection status in the tape
label when a password entry is added, replaced, or deleted. Protection status in a
tape label must be set with JCL.

Passwords to be added, replaced, deleted, or listed can be specified on utility
control statements or can be entered by the console operator. IEHPROGM issues a
message to the console operator when a password on a utility control statement is
either missing or invalid. The message contains the job name, step name, and
utility control statement name and identifies the particular password that is missing
or invalid. Two invalid passwords are allowed per password entry on each utility
control statement before the request is ignored; a total of five invalid passwords is
allowed for the password entries on all the utility control statements in a job step
before the step is canceled.

Adding Data Set Passwords
When a password is added for a data set, an entry is created in the PASSWORD
data set with the specified data set name, password name, protection mode of the
password (read/write or read only), and the optional 77 characters of user-supplied
data. The access counter in the entry is set to zero.

The control password for a data set must always be specified to add, replace, or
delete secondary passwords. The control password should not be specified,
however, to list information from a secondary password entry.

Secondary passwords can be assigned to a data set to restrict some users to
reading the data set or to record the number of times certain users access the data
set. The access counter in each password entry provides a count of the number of
times the password was used to successfully open the data set.

If a control password for an online DASD data set is added, the protection status of
the data set (read/write or read-without-password) is set in the DSCB.

IEHPROGM

302 z/OS V2R13.0 DFSMSdfp Utilities

Replacing Data Set Passwords
Any of the following information may be replaced in a password entry: the
password, protection mode (read/write or read only) of the password, and the 77
characters of user data. The protection status of a data set can be changed by
replacing the control entry for the data set.

If the control entry of an online DASD data set is replaced, the DSCB is also reset
to indicate any change in the protection status of the data set. Therefore, you
should ensure that the volume is online when changing the protection status of a
DASD data set.

Deleting Data Set Passwords
When a control password entry is deleted from the PASSWORD data set, all
secondary password entries for that data set are also deleted. However, when a
secondary entry is deleted, no other password entries are deleted.

If the control password entry is deleted for an online DASD data set, the protection
status of the data set in the DSCB is also changed to indicate no protection. When
deleting a control password for a DASD data set, the user should ensure that the
volume is online. If the volume is not online, the password entry is removed, but
data set protection is still indicated in the DSCB; the data set cannot be accessed
unless another password is added for that data set.

If the control password entry is deleted for a tape data set, the tape volume cannot
be accessed unless another password is added for that data set.

The delete function should be used to delete all the password entries for a
scratched data set to make the space available for new entries.

Listing Password Entries
A list of information from any entry in the PASSWORD data set can be obtained in
the SYSPRINT data set by providing the password for that entry. The list includes:
the number of times the password has been used to successfully open the data set;
the type of password (control password or secondary password) and type of access
allowed by the password (read/write or read-only); and the user data in the entry.
Figure 48 shows a sample list of information printed from a password entry.

Input and Output
IEHPROGM uses the following input:

v One or more data sets containing system control data to be modified.

v A control data set that contains utility control statements used to control the
functions of the program.

IEHPROGM produces the following output:

v A modified object data set or volumes.

DECIMAL ACCESS COUNT= 000025
PROTECT MODE BYTE= SECONDARY, READ ONLY
USER DATA FIELD= ASSIGNED TO J. BROWN

Figure 48. Listing of a Password Entry

IEHPROGM

Chapter 15. IEHPROGM (Program Maintenance) Program 303

v A message data set that contains error messages and information from the
PASSWORD data set.

If IEHPROGM is invoked from an application program, you can dynamically allocate
the devices and data sets by issuing SVC 99 before calling IEHPROGM.

See Appendix A for IEHPROGM return codes.

Control
IEHPROGM is controlled by job and utility control statements.

You can use job control statements to perform these tasks:

v Process or load the program.

v Define the control data set.

v Define volumes or devices to be used during the course of program execution.

v Prevent data sets from being deleted inadvertently.

v Prevent volumes from being demounted before they have been completely
processed by the program.

v Suppress the listing of utility control statements.

Utility control statements are used to control the functions of the program and to
define those data sets or volumes that are to be modified.

Job Control Statements
Table 57 shows the job control statements for IEHPROGM.

Table 57. IEHPROGM Job Control Statements

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IEHPROGM) or, if the job control
statements reside in a procedure library, the procedure name. Additional
PARM information can be specified to control the number of lines per
page on the output listing and to suppress printing of utility control
statements. See “EXEC Statement”.

SYSPRINT DD Defines a sequential data set for messages.

anyname DD Defines a permanently mounted or mountable volume.

SYSIN DD Defines the control data set. The control data set normally follows the job
control statements in the input stream; however, it can be defined as a
member of a procedure library.

EXEC Statement
The syntax of the EXEC statement is:

//[stepname] EXEC PGM=IEHPROGM
[,PARM=[LINECNT=xx][,PRINT|NOPRINT]]

where:

PGM=IEHPROGM
specifies that you want to run IEHPROGM.

IEHPROGM

304 z/OS V2R13.0 DFSMSdfp Utilities

PARM=[LINECNT=xx] [,PRINT|NOPRINT]
specifies what should be contained in the SYSPRINT data set, and how the
printed output of SYSPRINT should be formatted. If more than one
subparameter is coded with PARM, the subparameters must be enclosed in
parentheses or single quotes.

LINECNT=xx
specifies the number of lines per page to be printed in the listing of the
SYSPRINT data set. The value xx can be from 01 to 99. The default is 45.

PRINT|NOPRINT
specifies whether utility control statements are to be included in the
SYSPRINT listing. Suppressing printing of utility control statements assures
that passwords assigned to data sets remain confidential. However,
suppressing printing may make it difficult to interpret error messages,
because the relevant utility control statement is not printed before the
message.

The default is to print all control statements.

SYSPRINT DD Statement
The block size for the SYSPRINT data set must be a multiple of 121. Any blocking
factor can be specified.

anyname DD Statement
A DD statement must be included for each permanently mounted or mountable
volume referred to in the job step. These DD statements are used as device
allocation statements, rather than as true data definition statements.

This DD statement can be entered:
//anyname DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

The UNIT and VOLUME parameters define the device type and volume serial
number. The DISP=OLD specification prevents the inadvertent creation of a data
set.

Because IEHPROGM modifies the internal control blocks created by device
allocation DD statements, the DSNAME parameter, if supplied, will be ignored by
IEHPROGM. (All data sets are defined explicitly or implicitly by utility control
statements.)

Note: Unpredictable results may occur in multitasking environments where dynamic
allocation/deallocation of devices, by other tasks, causes changes in the
TIOT during IEHPROGM execution.

To specify deferred mounting with mountable volumes, code:
//anyname DD VOLUME=(PRIVATE,SER=xxxxxx),
// UNIT=(xxxx,,DEFER),DISP=OLD

Unit affinity cannot be used on DD statements defining mountable devices.

SYSIN DD Statement
The block size for the SYSIN data set must be a multiple of 80. Any blocking factor
can be specified.

IEHPROGM

Chapter 15. IEHPROGM (Program Maintenance) Program 305

Utility Control Statements
Table 58 shows the utility control statements for IEHPROGM.

Table 58. IEHPROGM Utility Control Statements

Statement Use

SCRATCH Scratches a data set or a member from a DASD volume.

RENAME Changes the name or alias of a data set or member residing on a DASD
volume.

CATLG Generates an entry in the index of a catalog.

UNCATLG Removes an entry from the catalog.

ADD Adds a password entry in the PASSWORD data set.

REPLACE Replaces information in a password entry.

DELETEP Deletes an entry in the PASSWORD data set.

LIST Formats and lists information from a password entry.

Continuation requirements for utility control statements are described in “Continuing
Utility Control Statements” on page 8.

SCRATCH Statement
The SCRATCH statement is used to scratch a data set or member from a DASD
volume. A data set or member is scratched only from the volumes designated in the
SCRATCH statement. This function does not delete catalog entries for scratched
data sets.

A SCRATCH operation will not be processed if the data set or volume is being used
by a program executing concurrently. “DISP=OLD” on the DD statement only
prevents the inadvertent deletion of a data set. It does not ensure exclusive use of
the data set during execution of the job step. When scratching a member of a
partitioned data set, it is your responsibility to ensure that the data set is not
currently in use.

For multivolume data sets, all volumes specified must be online.

When scratching a data set managed by the Storage Management Subsystem
(SMS), care must be taken to ensure that the device type and volumes list on the
VOL parameter reflects the volume actually allocated to the data set. When you
specify a volume when creating an SMS-managed data set, SMS will not
automatically allocate the data set on that volume.

When scratching an SMS-managed data set, IEHPROGM will uncatalog that data
set.

The syntax of the SCRATCH statement is shown below.

[label] SCRATCH {VTOC|DSNAME=name}
,VOL=device=(list)
[,PURGE]
[,MEMBER=name]
[,SYS]

where:

IEHPROGM

306 z/OS V2R13.0 DFSMSdfp Utilities

VTOC
specifies that all data sets on the designated volume be scratched, except for
v a data set that is protected by a password
v a data set whose expiration date has not passed
v a data set that contains the index for an indexed VTOC

Password-protected data sets are scratched if the correct password is provided.

The effect of VTOC is modified when it is used with PURGE or SYS.

DSNAME=name
specifies the fully qualified name of the data set to be scratched or the
partitioned data set that contains the member to be scratched. The name must
not exceed 44 characters, including delimiters.

VOL=device=(list)
specifies the device type and serial numbers of the volumes, limited to 50, that
contain the data sets. If only one serial number is listed, it need not be
enclosed in parentheses. Multiple serial numbers should be separated with
commas.

If VTOC or MEMBER is specified, VOL cannot specify more than one volume.
Caution should be used when specifying VTOC if VOL specifies the system
residence volume.

PURGE/NOPURGE
specifies whether data sets designated by DSNAME or VTOC are scratched.

The presence of the PURGE or NOPURGE keyword may be ignored for SMS
managed data sets. When OVRD_EXPDT is specified in the IGDSMSxx
member of SYS1.PARMLIB, the PURGE and NOPURGE keywords are not
honored. The data set is always deleted, whether or not it has expired. This is
true only if the data set is a DASD data set and SMS managed. The use of the
PURGE and NOPURGE keywords is unchanged for non-SMS managed data
sets.

MEMBER=name
specifies a member name or alias of a member (in the named data set) to be
removed from the directory of a partitioned data set. This name is not
validity-checked because all members must be accessible, whether the name is
valid or not.

Default: The entire data set or volume of data sets specified by name is
scratched.

SYS
limits the action of SCRATCH VTOC so that only temporary data sets are
erased. This means data sets whose names were coded beginning with an
ampersand on JCL. An example is
DSN=&LIB

Temporary data sets have names beginning with
“AAAAAAAA.AAAAAAAA.AAAAAAAA.AAAAAAAA.” or “SYSnnnnn.T” with “F”,
“V”, or “A” in position 19. These are names assigned to the data sets by the
operating system.

If the name of the data set is in this form, it is likely to be a temporary data set
which was not erased at normal step or job termination; nnnnn is the date the
data set was created in yyddd format.

IEHPROGM

Chapter 15. IEHPROGM (Program Maintenance) Program 307

The SYS parameter is valid only when VTOC is specified.

RENAME Statement
The RENAME statement is used to change the true name or alias of a data set or
member residing on a DASD volume. The name is changed only on the designated
volumes. The rename operation does not update the catalog.

A RENAME operation will not be processed if the data set or volume is being used
by a program executing concurrently. When renaming a member of a partitioned
data set, it is your responsibility to ensure that the data set is not currently in use.

For multivolume data sets, all volumes specified must be online.

If you do not code the MEMBER parameter, the entire data set is renamed.

When renaming a data set managed by the Storage Management Subsystem
(SMS), care must be taken to ensure that the device type and volumes list on the
VOL parameter reflects the volume actually allocated to the data set. When you
specify a volume when allocating an SMS-managed data set, SMS will not
automatically allocate the data set on that volume.

When renaming SMS-managed data sets, IEHPROGM will uncatalog the data set
and recatalog the data set under the new name. If recataloging is necessary, but
cannot be done (because of an alias), IEHPROGM will not rename the data set.

The syntax of the RENAME statement is:

[label] RENAME DSNAME=name
,VOL=device=(list)
,NEWNAME=name
[,MEMBER=name]

where:

DSNAME=name
specifies the fully qualified name of the data set to be renamed or the
partitioned data set that contains the member to be renamed. The name must
not exceed 44 characters, including delimiters.

VOL=device=(list)
specifies the device type and serial numbers of the volumes, limited to 50, that
contain the data sets. If only one serial number is listed, it need not be
enclosed in parentheses. Multiple serial numbers should be separated with
commas.

If MEMBER is specified, VOL cannot specify more than one volume.

NEWNAME=name
specifies the new fully qualified name or alias name for the data set or the new
member.

MEMBER=name
specifies a member name or alias of a member (in the named data set) to be
renamed. This name is not validity-checked because all members must be
accessible, whether the name is valid or not.

Default: The entire data set or volume of data sets specified by name is
changed.

IEHPROGM

308 z/OS V2R13.0 DFSMSdfp Utilities

CATLG and UNCATLG Statements
The CATLG statement is used to generate a non-VSAM entry in a catalog.

The UNCATLG statement is used to remove a non-VSAM entry from the catalog.

You cannot use IEHPROGM to catalog or uncatalog data sets (except by renaming
or scratching them) which are SMS-managed. IEHPROGM can only be used to
catalog or uncatalog non-VSAM data sets which are not SMS-managed. To catalog
or uncatalog SMS managed data sets, see z/OS DFSMS: Managing Catalogs and
z/OS DFSMS Access Method Services.

The syntax of the CATLG and UNCATLG statements is:

[label] {CATLG|
UNCATLG}

DSNAME=name
,VOL=device={(list)|(serial,seqno[,...])}

Note: VOL can only be coded with CATLG

where:

DSNAME=name
specifies the fully qualified name of the data set to be cataloged or uncataloged.
The name must not exceed 44 characters, including delimiters.

VOL=device={(list)| (serial,seqno[,...])}
specifies the device type, serial numbers, and data set sequence numbers (for
tape volumes) of the volumes (up to 50) that contain the data sets to be
cataloged in the catalog.

Always use generic device names (for instance, 3390) for device.

The volume serial numbers must appear in the same order in which they were
originally encountered (in DD statements within the input stream) when the data
set was created. Multiple serial numbers should be separated with commas.

Seqno is valid only for data sets which reside on tape.

VOL can only be coded with CATLG.

ADD (Add a Password) and REPLACE (Replace a Password)
Statements
The ADD statement is used to add a password entry in the PASSWORD data set.
When the control entry for an online DASD data set is added, the indicated
protection status of the data set is set in the DSCB; when a secondary entry is
added, the protection status in the DSCB is not changed.

The REPLACE statement is used to replace any or all of the following information in
a password entry: the password name, protection mode (read/write or read only) of
the password, and user data. When the control entry for an online DASD data set is
replaced, the protection status of the data set is changed in the DSCB if necessary;
when a secondary entry is replaced, the protection status in the DSCB is not
changed.

IEHPROGM

Chapter 15. IEHPROGM (Program Maintenance) Program 309

The syntax of the ADD and REPLACE statements is:

[label] {ADD|
REPLACE}

DSNAME=name
[,PASWORD1=current-password]
[,PASWORD2=new-password]
[,CPASWORD=control-password]
[,TYPE=code]
[,VOL=device=(list)]
[,DATA='user-data']

Note: PASWORD1 can only be coded with REPLACE

where:

DSNAME=name
specifies the fully qualified name of the data set whose password entry is to be
added or changed. The name must not exceed 44 characters, including
delimiters.

PASWORD1=current-password
specifies the password in the entry to be changed. If PASWORD1 is not coded,
the operator is prompted for the current password. PASWORD1 can only be
coded with REPLACE.

PASWORD2=new-password
specifies the new password to be added or assigned to the entry. If the
password is not to be changed, the current password must also be specified as
the new password. The password can consist of 1 to 8 alphanumeric
characters. If PASWORD2 is not coded, the operator is prompted for a new
password.

CPASWORD=control-password
specifies the control password for the data set.

For ADD, CPASWORD must be specified unless this is the first password
assigned to the data set, in which case PASWORD2 specifies the password to
be added.

For REPLACE, CPASWORD must be specified unless the control entry is being
changed, in which case PASWORD1 specifies the control password.

TYPE=code
specifies the protection code of the password and, if a control password entry is
to be changed for or assigned to a BDAM online data set, specifies the
protection status of the data set. The values that can be specified for code are:

1 specifies that the password is to allow both read and write access to the
data set; if a control password is being assigned or changed, read/write
protection is set in the DSCB.

2 specifies that the password is to allow only read access to the data set; if
control password is being assigned or changed, read/write protection is set
in the DSCB.

3 specifies that the password is to allow both read and write access to the
data set; if a control password is being assigned or changed,
read-without-password protection is set in the DSCB.

IEHPROGM

310 z/OS V2R13.0 DFSMSdfp Utilities

Default: For ADD, if this parameter is omitted, the new password is assigned
the same protection code as the control password for the data set. If a control
password is being “added”, TYPE=3 is the default. For REPLACE, the
protection is not changed.

VOL=device=(list)
specifies the device type and serial numbers of the volumes, limited to 50, that
contain the data sets. If only one serial number is listed, it need not be
enclosed in parentheses. Multiple serial numbers should be separated with
commas.

If omitted, the protection status in the DSCB is not set or changed, unless the
data set is cataloged and online. This parameter is not necessary for secondary
password entries, or if the desired protection status in the DSCB is already set
or is not to be changed.

DATA='user-data'
specifies the user data to be placed in the password entry. The user data has a
maximum length of 77 bytes and must be enclosed in apostrophes. Any other
apostrophes contained within the user data must be entered as two single
apostrophes.

If DATA is omitted from an ADD operation, 77 blanks are used. If DATA is
omitted from a REPLACE operation, current user data is not changed.

DELETEP (Delete a Password) Statement
The DELETEP statement is used to delete an entry in the PASSWORD data set. If
a control entry is deleted, all the secondary entries for that data set are also
deleted. If a secondary entry is deleted, only that entry is deleted. When the control
entry for an online DASD data set is deleted, the protection status in the DSCB is
set to indicate that the data set is no longer protected.

The syntax of the DELETEP statement is:

[label] DELETEP DSNAME=name
[,PASWORD1=current-password]
[,CPASWORD=control-password]
[,VOL=device=(list)]

where:

DSNAME=name
specifies the fully qualified name of the data set whose password entry is to be
deleted. The name must not exceed 44 characters, including delimiters.

PASWORD1=current-password
specifies the password in the entry to be deleted. If PASWORD1 is not coded,
the operator is prompted for the current password.

CPASWORD=control-password
CPASWORD must be specified unless the control entry is being deleted, in
which case PASWORD1 specifies the control password.

VOL=device=(list)
specifies the device type and serial numbers of the volumes, limited to 50, that
contain the data sets. If only one serial number is listed, it need not be
enclosed in parentheses. Multiple serial numbers should be separated with
commas.

IEHPROGM

Chapter 15. IEHPROGM (Program Maintenance) Program 311

If omitted, the protection status in the DSCB is not changed, unless the data set
is cataloged and online. This parameter is not necessary for secondary
password entries, or if the desired protection status in the DSCB is already set.

LIST (List Information from a Password) Statement
The LIST statement is used to format and print information from a password entry.

The syntax of the LIST statement is:

[label] LIST DSNAME=name
,PASWORD1=current-password

where:

DSNAME=name
specifies the fully qualified name of the data set whose password entry is to be
listed. The name must not exceed 44 characters, including delimiters.

PASWORD1=current-password
specifies the password in the entry to be listed. If PASWORD1 is not coded, the
operator is prompted for the current password.

IEHPROGM Examples
The following examples illustrate some of the uses of IEHPROGM. Table 59 can be
used as a quick-reference guide to IEHPROGM examples. The numbers in the
“Example” column point to the examples that follow.

Table 59. IEHPROGM Example Directory

Operation Mount
Volumes

Comments Example

BLDG Disk A new generation data group index is built and updated through JCL.
A model DSCB is created. New generations are added.

10

BLDG, RENAME,
CATLG

Disk A generation data group index is built; three data sets are renamed
and entered in the index.

9

LIST, REPLACE Disk A password entry is listed. Protection mode and status are changed,
and user data is added.

6

RENAME Disk A member of a partitioned data set is renamed. 7

RENAME,
DELETEP, ADD

Disk A data set is renamed. The old passwords are deleted and new
passwords are assigned.

5

RENAME,
UNCATLG, CATLG

Disk A data set is renamed on two mountable devices; the old data set
name is removed. The data set is cataloged under its new name.

3

SCRATCH Disk The data sets’ DSCB is scratched. 1

SCRATCH,
UNCATLG

Disk Two data sets are scratched and their entries removed from the
catalog.

2

UNCATLG Disk Index structures for three generation data sets are deleted from the
catalog.

4

Examples that use disk or tape in place of actual device names or numbers must
be changed before use. The actual device names or numbers depend on how your
installation has defined the devices to your system.

IEHPROGM

312 z/OS V2R13.0 DFSMSdfp Utilities

Example 1: Scratch Temporary System Data Sets
In this example, all temporary system data sets are scratched from the volume table
of contents.

//SCRVTOC JOB ...
//STEP1 EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DD2 DD UNIT=disk,VOLUME=SER=222222,DISP=OLD
//SYSIN DD *

SCRATCH VTOC,VOL=disk=222222,SYS
/*

The control statements are discussed below:

v The DD2 statement defines a volume. Because the system residence volume is
not referred to, a DD statement is needed to define it.

v The SCRATCH statement, with SYS specified, indicates that all temporary
system data sets whose expiration dates have expired are scratched from the
specified volume.

Example 2: Scratch and Uncatalog Two Data Sets
In this example, two data sets are scratched: SET1 and A.B.C.D.E are scratched
from volume 222222. Both data sets are uncataloged.

//SCRDSETS JOB ...
//STEP1 EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//DD2 DD UNIT=disk,DISP=OLD,VOLUME=SER=222222
//SYSIN DD *

SCRATCH DSNAME=SET1,VOL=disk=222222
UNCATLG DSNAME=SET1
SCRATCH DSNAME=A.B.C.D.E,VOL=disk=222222
UNCATLG DSNAME=A.B.C.D.E

/*

The utility control statements are discussed below:

v The first SCRATCH statement specifies that SET1, which resides on volume
222222, is scratched.

v The first UNCATLG statement specifies that SET1 is uncataloged.

v The second SCRATCH statement specifies that A.B.C.D.E, which resides on
volume 222222, is scratched.

v The second UNCATLG statement specifies that A.B.C.D.E is uncataloged.

Example 3: Rename a Multi-Volume Data Set Catalog
In this example, the name of a data set is changed on two mountable volumes. The
old data set name is removed and the data set is cataloged under its new data set
name.

//RENAMEDS JOB ...
//STEP1 EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DD1 DD VOLUME=SER=111111,UNIT=disk,DISP=OLD
//DD2 DD UNIT=(disk,,DEFER),DISP=OLD,
// VOLUME=(PRIVATE,SER=(222222,333333))
//SYSIN DD *

RENAME DSNAME=A.B.C,NEWNAME=NEWSET,VOL=disk=(222222,333333)
UNCATLG DSNAME=A.B.C
CATLG DSNAME=NEWSET,VOL=disk=(222222,333333)

/*

IEHPROGM

Chapter 15. IEHPROGM (Program Maintenance) Program 313

The control statements are discussed below:

v RENAME specifies that data set A.B.C, which resides on volumes 222222 and
333333, is to be renamed NEWSET.

v UNCATLG specifies that data set A.B.C is uncataloged.

v CATLG specifies that NEWSET, which resides on volumes 222222 and 333333,
is cataloged.

Example 4: Uncatalog Three Data Sets
In this example, three data sets, A.B.C.D.E.F.SET1, A.B.C.G.H.SET2, and
A.B.I.J.K.SET3, are uncataloged.

//DLTSTRUC JOB ...
//STEP1 EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//SYSIN DD *

UNCATLG DSNAME=A.B.C.D.E.F.SET1
UNCATLG DSNAME=A.B.C.G.H.SET2
UNCATLG DSNAME=A.B.I.J.K.SET3

/*

The control statements are discussed below:

v The UNCATLG statements specify that data sets A.B.C.D.E.F.SET1,
A.B.C.G.H.SET2, and A.B.I.J.K.SET3 are uncataloged.

Example 5: Rename a Data Set and Define New Passwords
In this example, a data set is renamed. The data set passwords assigned to the old
data set name are deleted. Then two passwords are assigned to the new data set
name. If the data set is not cataloged, a message is issued indicating that the
LOCATE macro instruction ended unsuccessfully.

72
//ADDPASS JOB ...
//STEP1 EXEC PGM=IEHPROGM,PARM=’NOPRINT’
//SYSPRINT DD SYSOUT=A
//DD1 DD VOLUME=SER=222222,DISP=OLD,
// UNIT=disk
//SYSIN DD *

RENAME DSNAME=OLD,VOL=disk=222222,NEWNAME=NEW
DELETEP DSNAME=OLD,PASWORD1=KEY

ADD DSNAME=NEW,PASWORD2=KEY,TYPE=1, X
DATA=’SECONDARY IS READ’

ADD DSNAME=NEW,PASWORD2=READ,CPASWORD=KEY,TYPE=2, X
DATA=’ASSIGNED TO J. DOE’

/*

The utility control statements are discussed below:

v RENAME specifies that the data set called OLD is renamed NEW. The operator
is required to supply a password to rename the old data set.

v DELETEP specifies that the entry for the password KEY is deleted. Because
KEY is a control password in this example, all the password entries for the data
set name are deleted. The VOL parameter is not needed because the protection
status of the data set as set in the DSCB is not to be changed; read/write
protection is presently set in the DSCB, and read/write protection is desired when
the passwords are reassigned under the new data set name.

v The ADD statements specify that entries are added for passwords KEY and
READ. KEY becomes the control password and allows both read and write
access to the data set. READ becomes a secondary password and allows only

IEHPROGM

314 z/OS V2R13.0 DFSMSdfp Utilities

read access to the data set. The VOL parameter is not needed, because the
protection status of the data set is still set in the DSCB.

Example 6: List and Replace Password Information
In this example, information from a password entry is listed. Then the protection
mode of the password, the protection status of the data set, and the user data are
changed.

72
//REPLPASS JOB ...
//STEP1 EXEC PGM=IEHPROGM,PARM=’NOPRINT’
//SYSPRINT DD SYSOUT=A
//DD1 DD UNIT=disk,VOLUME=SER=111111,DISP=OLD
//DD2 DD VOLUME=(PRIVATE,SER=(222222,333333)),
// UNIT=(disk,,DEFER),DISP=OLD
//SYSIN DD *

LIST DSNAME=A.B.C,PASWORD1=ABLE
REPLACE DSNAME=A.B.C,PASWORD1=ABLE,PASWORD2=ABLE,TYPE=3, X

VOL=disk=(222222,333333), X
DATA=’NO SECONDARIES; ASSIGNED TO DEPT 31’

/*

The utility control statements are discussed below:

v LIST specifies that the access counter, protection mode, and user data from the
entry for password ABLE are listed. Listing the entry permits the content of the
access counter to be recorded before the counter is reset to zero by the
REPLACE statement.

v REPLACE specifies that the protection mode of password ABLE is to be changed
to allow both read and write access and that the protection status of the data set
is changed to write-only protection. The VOL parameter is required because the
protection status of the data set is changed and the data set, in this example, is
not cataloged. Because this is a control password, the CPASWORD parameter is
not required.

Example 7: Rename a Partitioned Data Set Member
In this example, a member of a partitioned data set is renamed.

//REN JOB ...
//STEP1 EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DD1 DD VOL=SER=222222,DISP=OLD,UNIT=disk
//SYSIN DD *

RENAME VOL=disk=222222,DSNAME=DATASET,NEWNAME=BC,MEMBER=ABC
/*

The control statements are discussed below:

v DD1 DD defines a permanently mounted volume.

v SYSIN DD defines the input data set, which follows in the input stream.

v RENAME specifies that member ABC in the partitioned data set DATASET, which
resides on a disk volume, is renamed BC.

IEHPROGM

Chapter 15. IEHPROGM (Program Maintenance) Program 315

IEHPROGM

316 z/OS V2R13.0 DFSMSdfp Utilities

Chapter 16. IFHSTATR (List ESV Data) Program

IFHSTATR is a system utility that formats and prints information from Type 21 SMF
(system management facilities) records. These records provide error statistics by
volume (ESV) data.

Figure 49 shows the format of the type 21 records.

Assessing the Quality of Tapes in a Library
The statistics gathered by SMF in ESV records can be very useful for assessing the
quality of a tape library. IFHSTATR prints ESV records in date/time sequence. You
may find it useful to sort ESV records into volume serial number sequence, device
address sequence, or into error occurrence sequence to help analyze the condition
of the library.

TOTAL RECORD LENGTH (62) DESCRIPTOR

TIME OF DAY

CURRENT DATE

SYSTEM IDENTIFICATION

SYSTEM IDENTIFICATION

VOLUME SERIAL NUMBER

UCB TYPE

START I/Os

NOISE BLOCKS ERASE GAPS

VOLUME SERIAL NO. (CONT) CHANNEL UNIT ADDRESS

CLEANER ACTIONS TAPE FORMAT

BLOCK SIZE

BYTES WRITTEN

TAPE UNIT SERIAL (CONTINUED)

NUMBER OF 4K BYTES READ NUMBER OF 4K

TEMPORARY READ FORWARD ERRORS

TEMPORARY READ BACKWARD ERRORS TEMPORARY WRITE ERRORS

DCBOFLAG T/U SERIAL

LENGTH OF REST OF RECORD
INCLUDING THIS FIELD (44)

ERASE GAPS
(CONTINUED)

CURRENT DATE (CONTINUED)

TIME OF DAY (CONTINUED)

0 (X'00')
0 2 3 41

4 (X'04')

8 (X'08')

12 (X'0C')

16 (X'10')

20 (X'14')

24 (X'18')

28 (X'1C')

32 (X'20')

36 (X'24')

40 (X'28')

44 (X'2C')

48 (X'30')

52 (X'34')

56 (X'38')

60 (X'3C')

62 (X'3E')

SYSTEM
INDICATOR

TEMPORARY READ
ERRORS

PERMANENT READ
ERRORS

PERMANENT WRITE
ERRORS

TEMPORARY WRITE
ERRORS

RECORD
TYPE (21)

Offset and Length (in bytes):

Figure 49. SMF Type 21 (ESV) Record Format. Beginning with OS/390 Release 10, the
record is 80 bytes in length. Refer to Macro IGESMF21 and ″System Management Facilities″
for the contents.

© Copyright IBM Corp. 1979, 2002 317

The IFHSTATR report helps to identify deteriorating media (tapes); occasionally,
poor performance from a particular tape drive can also be identified. The TAPE
UNIT SERIAL may be used to identify the tape drive that wrote the tape.

An ESV record is written to the SMF data set:
1. When a volume is demounted
2. When a volume is demounted via DDR
3. When a tape drive is off-line
4. When a HALT EOD command is issued
5. When EREP is run

Because an ESV record may be written at other than demount time, more than one
record may be written during the time a volume is mounted. Therefore, the number
of records for a volume should not be used to determine the number of mounts or
uses of a volume.

Input and Output
IFHSTATR uses, as input, ESV records that contain error and usage information
about magnetic tape volumes. If no ESV records are found, a message is written to
the output data set. If the ESV record is not 62 or 80 bytes long, an INVALID TYPE
21 RECORD message is printed.

Run IFASMFDP to convert SYS1.MANX or SYS1.MANY from VSAM to physical
sequential prior to using IFHSTATR to retrieve data from the ESV records. For
information on how to run IFASMFDP, see z/OS MVS System Management
Facilities (SMF).

IFHSTATR produces an output data set which contains information selected from
ESV records. The output takes the form of 121-byte unblocked records, with an
American National Standards Institute (ANSI) control character in the first byte of
each record.

The input data set cannot have a block size that exceeds 32760 bytes. The tapes
represented by the SMF records can have block sizes that exceed 32760 bytes.

If the block size field or the usage SIO count field in the Type 21 record exceeds
99,999, IFHSTATR scales the output. For example, if the field was greater than
99,999 but less than 1,000,000 it will be scaled to multiples of 1,000 and the letter
″K″ will be appended. If the field is greater than 999,999 it will be scaled to
multiples of 1,000,000 and the letter ″M″ will be appended. Note that in this case
the meanings of ″K″ and ″M″ differ from the meanings of ″K″ and ″M″ in the
BLKSIZE value on the DD statement. On the DD statement, they mean multiples of
1024 and 1048576 respectively.

Figure 50 on page 319 shows a sample of printed output from IFHSTATR. The fields
in the printed output are explained in the legend that follows.

IFHSTATR

318 z/OS V2R13.0 DFSMSdfp Utilities

Legend
TIME OF DAY The time the ESV record was written.
DEV ADR The device address of the tape drive on which the tape was

mounted
T/U SER Serial number of the tape drive that wrote the tape, which is

obtained from the tape label for input tapes if available.
MODE¹ The OPEN flag bits for the data set being accessed.

v OUT = OPENED for OUTPUT
v RF = OPENED for INPUT forward
v RB = OPENED for INPUT read backward

BLOCKSIZE¹ The block size in the last data set accessed.
TAPE FORMAT¹ The recording format of the tape.
TEMP READ Number of read data checks that were successfully retried.
TEMP READB² Number of read data checks on read backward commands that

were successfully retried.
TEMP WRITE Number of write data checks that were successfully retried.
PERM RD Number of read data checks that were not successfully retried.
PERM WRT Number of write data checks that were not successfully retried.
NOISE BLOCK (NRZI only) Number of read data checks that had the number of

bytes read less than 12.
ERASE GAPS Number of times an erase gap command was issued during

error recovery. An erase gap command is issued before a retry
of a write data check.

CLEAN ACTS Number of times that, during read data check recovery, the tape
was moved over the cleaner blade. This will normally be done
after every fourth retry of the original read command.

USAGE SIO Number of channel programs completed (channel programs
started by ERP are not counted). Because a channel program
has any number of CCWs, this may not be the count of the
reads or writes.

MBYTES READ² Megabytes read.
MBYTES WRITTEN² Megabytes written.
Note:

¹ Data originates in the DCB or DCBE and may not be available.
² Buffered tape units only

T34201
T34202
T34200
T34200
T34201
T35901

MAGNETIC TAPE ERROR STATISTICS BY VOLUME 99172

99172
99172
99172
99172
99172
99172

08:04:22
12:01:59
12:02:18
12:03:21
12:04:21
14:35:41

0180
0281
028C
0480
0480
09A0

00000
56789
67890
78901
89012
72310

N/A
80
32768
80
65535
2147M

N/A
1600
6250
N/A
N/A
N/A

1
1
255
1
65535
0

N/A
N/A
N/A
2
65535
0

2
2
255
3
65535
0

3
3
255
4
255
0

4
4
255
5
255
1

5
5
255
N/A
N/A
N/A

6
6
65535
6
65535
0

7
7
65535
7
65535
0

8
8
65535
8
65535
999K

N/A
N/A
N/A
9
65535
0

N/A
N/A
N/A
10
65535
0

**
*
*

* T342001 IS A 3420 WITH SMALL NUMBER OF ERRORS
* T342002 IS A 3420 WITH MAXIMUM NUMBER OF ERRORS
* T348000 IS A 3480 WITH SMALL NUMBER OF ERRORS
* T348001 IS A 3480 WITH MAXIMUM NUMBER OF ERRORS
* T359001 IS A 3590 WITH SIO COUNT GREATER THAN 99,999 BUT LESS THAN 1,000,000 AND A BLOCKSIZE GREATER THAN 999,999
**

* T342000 IS A 3420 WITH SMALL NUMBER OF ERRORS WITH BLOCKSIZE/DENSITY N OT AVAILABLE

VOLUME
SERIAL

DATE

TIME
OF DAY

T/U
SER

DEV
ADR

MODE

BLOCK
SIZE

TAPE
FORM

TEMP
READ

TEMP
READB

TEMP
WRITE

PRM
RD

PRM
WRT

NOISE
BLOCK

ERASE
GAPS

CLEAN
ACTS

USAGE
S10

MBYTES
READ

MBYTES
WRITTEN

OUT
OUT
RB
RB
RF
RF

*
*
*
*
*
*
*
*

INVALID TYPE 21 R ECORD

Figure 50. Sample Output from IFHSTATR

IFHSTATR

Chapter 16. IFHSTATR (List ESV Data) Program 319

Control
IFHSTATR is controlled by job control statements. Utility control statements are not
used.

Table 60 shows the job control statements for IFHSTATR.

Table 60. IFHSTATR Job Control Statements

Statement Use

JOB Starts the job.

EXEC Specifies the program name (PGM=IFHSTATR).

SYSUT1 DD Defines the input data set and the device on which it resides. The
DSNAME and DISP parameters must be included. You need LABEL and
DCB parameters if the device is a tape device without IBM standard
labels. You need the UNIT and VOLUME parameters if the data set is not
cataloged.

SYSUT2 DD Defines the sequential data set on which the output is written.

IFHSTATR Example
In this example, IFHSTATR is used to print out Type 21 SMF records.

//REPORT JOB ...
//STEP1 EXEC PGM=IFHSTATR
//SYSUT1 DD UNIT=3480,DSNAME=SYS1.MAN,LABEL=(,SL),
// VOL=SER=volid,DISP=OLD
//SYSUT2 DD SYSOUT=A
/*

The output data set can reside on any output device supported by BSAM.

Note: The input LRECL and BLKSIZE parameters are not specified by IFHSTATR.
This information is taken from the DCB parameter on the SYSUT1 DD
statement or from the tape label.

IFHSTATR

320 z/OS V2R13.0 DFSMSdfp Utilities

Appendix A. Invoking Utility Programs from an Application
Program

This appendix documents Programming Interface and Associated Guidance
Information provided by DFSMS.

This appendix is intended to help you invoke a utility program from an application
program.

You can start a utility program through an application program by using the LINK
macro instructions. (ATTACH may also be used, but additional parameters are
needed. See z/OS MVS Programming: Assembler Services Reference ABE-HSP for
more information.)

You must supply the information that is usually specified in the PARM parameter of
the EXEC statement, and any nonstandard ddnames that define the data sets that
you want the utility to use.

Note: All parameters must reside below the line (that is, have 24 bit addresses).
For further information about LINK parameters, see z/OS MVS Programming:
Assembler Services Reference ABE-HSP.

When invoking IEBCOMPR, IEBCOPY, IEBDG, IEBGENER, IEBPTPCH, IEHLIST,
IEHMOVE, or IEHPROGM from an application program or the TSO CALL
command, you must dynamically allocate the device by issuing SVC 99 before
calling the utility or you must use the JCL or TSO ALLOCATE equivalent.

IEBCOPY, IEHINITT, IEHMOVE, and IEHPROGM are APF (authorized program
facility) programs. When executing an authorized program, the calling program must
also be authorized. If you are using TSO, the TSO service routine IKJEFTSR may
be used by an unauthorized program to invoke an authorized program such as
IEBCOPY. For details on program authorization, see z/OS MVS Programming:
Authorized Assembler Services Guide. For information about TSO, see z/OS TSO/E
Programming Services.

The syntax of the LINK macro instruction is:

[label] LINK EP=progname

,PARAM=(optionaddr[,ddnameaddr
[,hdingaddr]])
,VL=1

where:

EP=progname
specifies the name of the utility program.

PARAM=(optionaddr[,ddnameaddr [,hdingaddr]])
specifies, as a sublist, address parameters to be passed from the application
program to the utility program. All parameters and the parameter list itself must
be in 24 bit addressable storage. For details on how to build these parameter
lists, see “Building Parameter Lists” on page 322. These values can be coded:

© Copyright IBM Corp. 1979, 2002 321

optionaddr
specifies the address of an option list which contains options usually
specified in the PARM parameter of the EXEC statement. This must be
present for all utility programs.

ddnameaddr
specifies the address of a list of alternate ddnames for the data sets used
during utility program processing. If standard ddnames are used and this is
not the last parameter in the list, it should point to a halfword of zeros. If it
is the last parameter, it may be omitted.

hdingaddr
specifies the address of a list which contains an EBCDIC beginning page
number for the SYSPRINT data set. If hdingaddr is omitted, the page
number defaults to 1. Hdingaddr may be omitted if it is the last parameter.

VL=1
specifies that the sign bit of the last fullword of the address parameter list is to
be set to 1.

Building Parameter Lists
This section contains information about option lists, ddname lists, and page number
parameters.

Options List
The options list is the parameter list that contains the options that are usually
specified in the PARM parameter of the EXEC statement. This list is always
required, even if you are not passing any PARM options to a utility program.

The general syntax of the PARM options parameter list (OPTLIST) is:

The options list should begin on a halfword boundary. The two high-order bytes of
this list must contain a binary count of the number of bytes in the remainder of the
options list. The options list is free-form, with fields separated by commas. No
blanks or binary zeros should appear in the list outside of the first two bytes (the
length indicator).

For example, you can start IEBCOPY and pass it some PARM parameters by
coding the following (in assembler):

Note that in the above example, you do not code the parentheses or single
quotation marks that you would normally code in the PARM parameter. The PARM
parameters for the IEBCOPY example above would normally be coded

LINK EP=IEBCOPY,PARAM=(OPTLIST),VL=1
.
.
.

OPTLIST DC AL2(L’OPTPARM)
OPTPARM DC C'SIZE=1000K,WORK=1M'

322 z/OS V2R13.0 DFSMSdfp Utilities

PARM=(SIZE=1000K,WORK=1M) or PARM='SIZE=1000K,WORK=1M', but you
should not pass the enclosing parentheses or single quotations to IEBCOPY when
you start the program from an application program.

When you are not passing any PARM parameter values to a utility program, code a
halfword of binary zeros for the options list. For instance, to start the IEBGENER
program from an application program using no PARM values and the default
ddnames, code (in assembler):

ddname List
The ddname list is a parameter list containing alternate ddnames for the data sets
or volumes that you want the utility program to use. If you are using the standard
ddnames for your data sets, you do not need to code a ddname list, unless you
code a page header parameter.

An example of a case where you might want to use alternate DD names is when
your program is calling various programs that use the same DD name for different
data sets. Another example is when a program dynamically allocates a data set and
writes utility control statements to it before calling a utility.

The ddname list should begin on a halfword boundary. The two high-order bytes
must contain a count of the number of bytes in the remainder of the list. Each
ddname must take up 8 bytes. If a ddname is shorter than 8 bytes, it must be left
aligned and padded with blanks. If you code binary zeros for a ddname, or if you
omit a ddname by shortening the ddname list, the standard ddname is assumed.
You cannot omit a ddname from the middle of the ddname list without replacing it
with binary zeros.

The general structure of the ddname parameter list (DDNMELST) is:

LINK EP=IEBGENER,PARAM=(OPTLIST),VL=1
.
.
.

OPTLIST DC H'0'

Appendix A. Invoking Utility Programs from an Application Program 323

For example, to start IEBCOPY using nonstandard ddnames, you could code:

In this example, IEBCOPY is told to use INPDS as the input data set and OUTPDS
as the output data set.

To start utilities such as IEBCOPY with multiple input or output data sets, it is
necessary to pass a ddname list to the utility with alternative ddnames for SYSUT1
and SYSUT2. The utility control statements will be sufficient to identify the other
ddnames that you require.

You do not need to code a ddname parameter list when you are invoking the IEH
system utilities. The ddnames for these utilities define devices rather than data sets,
and the utility control statements used by these utilities are sufficient for identifying
the appropriate devices. The IEH utilities only use the entries for SYSIN and
SYSPRINT from the ddname list.

Page Header Parameter
You can specify the beginning page number of your printed output by passing to a
utility a page header parameter. The first two bytes of this parameter must contain
the length of the remainder of the parameter. The page number cannot be longer
than 4 bytes and must be in EBCDIC format.

X ’ 00000000 00000000 ’

X ’ 00000000 00000000 ’

X ’ 00000000 00000000 ’

X ’ 00000000 00000000 ’

X ’ 00000000 00000000 ’

SYSIN

SYSUT1

SYSUT2

SYSUT3

SYSUT4

SYSPRINT

Length of DDNMPARM

DDNMPARM

DDNMELST

26Length:
(in bytes)

LINK EP=IEBCOPY,PARAM=(OPTLIST,DDNMELST),VL=1
.
.
.

OPTLIST DC H'0'
DDNMELST DC AL2(L'DDNMEND)
DDNMPARM DC 7XL8'0'

DC CL8'INPDS '
DC CL8'OUTPDS '

DDNMEND EQU DDNMPARM,*-DDNMPARM

324 z/OS V2R13.0 DFSMSdfp Utilities

Some utilities update the page number that are passed to them. They replace it
with a value that is one greater than the last page number used. This allows for
consecutive invocations.

The general syntax of the page header parameter (HDNGLST) is:

For example, to load IEHLIST and get a printout whose first page begins with a
page number of 10, you could code:

Some utilities use fewer than 4 bytes per page number. Storing a page number that
is too large in the page header parameter could cause unpredictable results. For
example, if you link to IEBIMAGE with a page number of 998, the following page
numbers result:
998
999
(blank)

1
2

(and so on)

In this case, you cannot specify a page number larger than 999.

Return Codes
The following sections define the return codes for the utility programs.

IEBCOMPR Return Codes
IEBCOMPR returns a code in register 15 to indicate the results of program
execution. The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

08 (X'08') An unequal comparison. Processing continues.

12 (X'0C') An unrecoverable error exists. The utility ends.

16 (X'10') A user routine passed a return code of 16 to IEBCOMPR. The utility
ends.

LINK EP=IEHLIST,PARAM=(OPTLIST,DDNMELST,HDNGLST),VL=1
.
.
.

OPTLIST DC H'0'
DDNMELST DC H'0'
HDNGLST DC AL2(L'PAGENUM)
PAGENUM DC C'10'

Appendix A. Invoking Utility Programs from an Application Program 325

IEBCOPY Return Codes
IEBCOPY returns a code in register 15 to indicate the results of program execution.
The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') One or more copy group operations ended unsuccessfully or were
incompletely performed. Recovery may be possible.

08 (X'08') An unrecoverable error exists. The utility ends.

IEBCOPY User ABEND Codes
In a diagnostic situation, IEBCOPY may issue a user ABEND. This occurs only
when the procedures in z/OS DFSMSdfp Diagnosis Reference are being followed.
An IEBCOPY message always precedes the ABEND. The ABEND code is the same
as the message number. For example, message IEB1021E will precede user
ABEND U1021.

IEBDG Return Codes
IEBDG returns a code in register 15 to indicate the results of program execution.
The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') A user routine returned a code of 16 to IEBDG. The utility ends at
the user’s request.

08 (X'08') An error occurred while processing a set of utility control
statements. No data is generated following the error. Processing
continues normally with the next set of utility control statements, if
any.

12 (X'0C') An error occurred while processing an input or output data set. The
utility ends.

16 (X'10') An error occurred from which recovery is not possible. The utility
ends.

IEBEDIT Return Codes
IEBEDIT returns a code in register 15 to indicate the results of program execution.
The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') An error occurred. The output data set may not be usable as a job
stream. Processing continues.

08 (X'08') An unrecoverable error occurred while attempting to process the
input, output, or control data set. The utility ends.

326 z/OS V2R13.0 DFSMSdfp Utilities

IEBGENER Return Codes
IEBGENER returns a code in register 15 to indicate the results of program
execution. The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') Probable successful completion. A warning message is written.

08 (X'08') Either processing was ended after you requested processing of
user header labels only, or a DBCS error was encountered.

12 (X'0C') Either an unrecoverable error exists and the job step is stopped, or
a DBCS error was encountered.

16 (X'10') A user routine passed a return code of 16 to IEBGENER. The utility
ends.

IEBIMAGE Return Codes
IEBIMAGE returns a code in register 15 that represents the most severe error
condition encountered during the program execution. This return code is also
printed in the output listing. The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion; operations performed as requested.

04 (X'04') Operations performed; investigate messages for exceptional
circumstances.

08 (X'08') Operations not performed; investigate messages.

12 (X'0C') Severe exception; processing may end.

16 (X'10') Unrecoverable exception; the utility ends.

20 (X'14') SYSPRINT data set could not be opened; the utility is ended.

24 (X'18') User parameter list incorrect; the utility is ended.

IEBISAM Return Codes
IEBISAM returns a code in register 15 to indicate the results of program execution.
The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') A return code of 04 or 12 was passed to IEBISAM by the user
routine.

08 (X'08') An error condition occurred that caused termination of the
operation.

12 (X'0C') A return code other than 00, 04, 08, or 12 was passed to IEBISAM
from a user routine. The utility is ended.

16 (X'10') An error condition caused termination of the operation.

Appendix A. Invoking Utility Programs from an Application Program 327

IEBPTPCH Return Codes
IEBPTPCH returns a code in register 15 to indicate the results of program
execution. The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') Either a physical sequential data set is empty or a partitioned data
set has no members.

08 (X'08') A member specified for printing or punching does not exist in the
input data set and processing will continue with the next member,
or a DBCS error was encountered.

12 (X'0C') An unrecoverable error occurred, a user routine passed a return
code of 12 to IEBPTPCH and the utility is ended, or a DBCS error
was encountered.

16 (X'10') A user routine passed a return code of 16 to IEBPTPCH. The utility
is ended.

IEBUPDTE Return Codes
IEBUPDTE returns a code in register 15 to indicate the results of program
execution. The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') A control statement is coded incorrectly or used erroneously. If
either the input or output is sequential, the utility is ended. If both
are partitioned, the program continues processing with the next
function to be performed.

12 (X'0C') An unrecoverable error exists. The utility is ended.

16 (X'10') A label processing code of 16 was received from a user’s label
processing routine. The utility is ended.

IEHINITT Return Codes
IEHINITT returns a code in register 15 to indicate the results of program execution.
The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion. A message data set was created.

04 (X'04') Successful completion. No message data set was defined by the
user.

08 (X'08') IEHINITT completed its operation, but error conditions were
encountered during processing. A message data set was created.

12 (X'0C') IEHINITT completed its operation, but error conditions were
encountered during processing. No message data set was defined
by the user.

16 (X'10') IEHINITT ended operation because of error conditions encountered
while attempting to read the control data set. A message data set
was created if defined by the user.

328 z/OS V2R13.0 DFSMSdfp Utilities

IEHLIST Return Codes
IEHLIST returns a code in register 15 to indicate the results of program execution.
The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

08 (X'08') An error condition caused a specified request to be ignored.
Processing continues.

12 (X'0C') A permanent input/output error occurred. The job is ended.

16 (X'10') An unrecoverable error occurred while reading the data set. The job
is ended.

IEHMOVE Return Codes
IEHMOVE returns a code in register 15 to indicate the results of program execution.
The return codes and their meanings are:

Code Meaning

00 (X'00') Successful completion.

04 (X'04') A specified function was not completely successful. Processing
continues.

08 (X'08') A condition exists from which recovery is possible. Processing
continues.

12 (X'0C') An unrecoverable error exists. The utility is ended.

16 (X'10') It is impossible to OPEN the SYSIN or SYSPRINT data set. The
utility is ended.

IEHPROGM Return Codes
IEHPROGM returns a code in register 15 to indicate the results of program
execution. The return codes and their meanings are:

Codes Meaning

00 (X'00') Successful completion.

04 (X'04') A syntax error was found in the name field of the control statement
or in the PARM field in the EXEC statement. Processing continues.

08 (X'08') A request for a specific operation was ignored because of an
incorrect control statement or an otherwise invalid request. The
operation is not performed.

12 (X'0C') An input/output error was detected when trying to read from or write
to SYSPRINT, SYSIN or the VTOC. The utility is ended.

16 (X'10') An unrecoverable error exists. The utility is ended.

Appendix A. Invoking Utility Programs from an Application Program 329

330 z/OS V2R13.0 DFSMSdfp Utilities

Appendix B. Unload Partitioned Data Set Format

This appendix contains Programming Interface and Associated Guidance
Information.

This appendix is intended to help you use the unload data set that is created by an
IEBCOPY unload operation.

Introduction
An unload data set will have a format different from a partitioned data set or a
PDSE, no matter if the data set is being stored on a DASD device or on tape. Its
records will be longer and may require more space. It will have sequential
organization. You cannot always treat an unload data set the same as you would
the original partitioned data set or PDSE.

It may be easy to confuse the unload data set, which is sequential, from the
partitioned data set or PDSE. The unload data set or container data set is the
sequential data set created by the unload operation. The unloaded data set is the
original partitioned data set or PDSE that was unloaded into the unload data set.

Records Present in an Unload Data Set
This is a list of all of the types of records that may appear in an unload data set in
the groupings and order in which they must appear:

1. Unload File Header
v COPYR1, the first header record is always present.
v COPYR2, the second header record is always present.

2. Directory Information

v Directory Block Records
One or more are always present.
Each record contains 1 or more partitioned data set directory blocks.
The last record also ends with an EOF block of 12 bytes of zeros.
For PDSE, a long name directory containing names greater than 8
characters will be included.

v Data Set Attribute Records
These are optional, and can only appear in a PDSE format unload data
set.

3. Individual Member Data (This group repeats for each member.)

v Note List Record
Used by the linkage editor and other applications to record relocatable
addresses of records inside the member.

v Member Data Records
One or more present.
Each record contains 1 or more physical blocks of the original data set.
The last record also ends with an EOF block (12 bytes of zeros).

v Member Attribute Records
These are optional, and can only appear in a PDSE format unload data
set.

A detailed description of the different records is given in later paragraphs.

© Copyright IBM Corp. 1979, 2002 331

Different Unload Data Set Formats
There are four different formats that the unload data set can take. The primary
difference between them is which records can appear in the data set. These
formats are:

1. Invalid Format

All records after the COPYR1 (if any) are undefined. The condition occurs when
an unload operation is ended because of an error. The COPYR1 is re-written as
the first record in the container data set with “Invalid Format” as part of error
clean-up.

2. Old Format (Pre-PDSE)

v There may be a note list record for each member.

v There are no attribute records.

v The original data set was a partitioned data set, not a PDSE.

v All DASD addresses are valid for a real device, and the DEB and DEVTAB
information comes from the DASD device which held the original data set.

v The second batch of data set label information (starting 46 bytes into
COPYR1 record) is not present.

3. New Format

v Note list records are now used by the linkage editor and other applications to
record relocatable addresses of records inside the member.

v Attribute records may be present if the original data set is a PDSE.

v Records from a PDSE contain DASD addresses from an artificial device that
has 256 tracks and 65536 cylinders and tracks of 16M bytes. This
convenience maps the maximum number of possible PDSE RLTs and MLTs
according to the restrictions for accessing PDSEs with BPAM documented in
the z/OS DFSMS: Using Data Sets.

While these addresses of consecutive records are strictly ascending, some
addresses are not to be used. Record numbers for PDSE members are
always odd starting with 1 and continuing 3, 5, 7, 9... Even record numbers
are reserved.

v The second batch of data set label information (starting 46 bytes into the
COPYR1 record) is valid.

4. Transfer Format

This format is reserved for the future implementation of a self describing
canonical representation of the data from the original data set. It has not been,
and may never be defined. Potential contents include:

Program objects in a format defined for interchange between Language
Compilers and the Binder.
DDM Architecture self-describing data and records.

Detailed Record Descriptions

General Rules and Restrictions
1. The maximum unload record length is 32780, which occurs when the data set

being unloaded has a block size of 32760.

Note that this is longer than the maximum permitted physical block length of
32760 bytes, so sometimes records must be spanned across physical blocks.

This number also exceeds the maximum LRECL allowed in a data set label.
When the data set label LRECL is 32760, the assembled logical record may
actually be longer.

332 z/OS V2R13.0 DFSMSdfp Utilities

2. When a record must be spanned across physical blocks, each block except the
last must be completely filled.

3. The length of any unload data set physical record can never exceed the unload
data set logical record length plus 4, even when the data set block size would
allow a longer physical record.

Header Records
The first two records of an IEBCOPY unload data set contain information that is
required to load the data set. The first record (COPYR1) contains a status field, an
ID field, and a DCB information field. The status and ID fields are used for validity
checking procedures. The DCB field is used to initialize the output data set during a
load function. The second record (COPYR2) contains parts of the original data
extent block (DEB) of the unloaded partitioned data set. When the data set is to be
loaded, this information is used to update all the user and note list TTRs. Table 61
and Table 62 on page 334 show the different fields in the COPYR1 and
COPYR2records.

Table 61. Contents of the COPYR1 Descriptor Record

Offset Into
Record

Field size
(Bytes) Type Of Data Field Contents

0 64 Structure COPYR1 - first header record
0 4 Structure Block Descriptor Word (BDW) for RECFM=VS data sets
0 2 Unsigned Binary Length of block, including BDW
2 2 reserved Must be zero
4 4 Structure Segment Descriptor Word (SDW) for RECFM=VS data sets
4 2 Unsigned Binary Length of segment, including SDW
6 2 Bit Flags Must be zero (COPYR1 record is never segmented)
8 1 Bit Flags Unload Data set Information. Numbering the MSB as ″0″,

0 & 1 - B’00’ = valid unload data set in old format.
B’01’ = valid unload data set in PDSE format.
B’10’ = the original data set cannot be reloaded because this
unload data set is known to be incomplete or in error.
B’11’ = unload data set in transfer format.
2 - Reserved, and must be zero.
4 - When set, the original data set was known to contain program
objects. When not set, it is not known if the contents are or are
not programs.
4 - Reserved, and must be zero.
5 - Reserved, and must be zero.
6 - Reserved, and must be zero.
7 - When set, the original data set was a PDSE.

9 3 Binary The constant value X’CA6D0F’.
(The following fields are from the original data set label (Format 1
DSCB).)

12 2 Bitstring Data set organization (DS1DSORG). X’0200’ is PDS.
14 2 Unsigned Binary Block size (DS1BLKL)
16 2 Unsigned Binary Logical Record Length (DS1LRECL)
18 1 Bit Flags Record Format (DS1RECFM) Numbering the MSB as ″0″,

0 & 1 - B’00’ is unknown format
B’01’ is Variable format (RECFM=V)
B’10’ is Fixed format (RECFM=F)
B’11’ is Undefined (RECFM=U)
2 - When set, DASD track overflow may be used.
3 - When set, records may be blocked.

Appendix B. Unload Partitioned Data Set Format 333

Table 61. Contents of the COPYR1 Descriptor Record (continued)

Offset Into
Record

Field size
(Bytes) Type Of Data Field Contents

4 - When set, variable format records may be spanned; for fixed
format only the last block may be short.
5 & 6 - B’00’ is first record byte is a data byte.
B’01’ first byte is ANSI/ISO carriage control.
B’10’ first byte IBM machine carriage control.
B’11’ is an invalid combination.
7 - Reserved and may be either zero or one.

19 1 Unsigned Binary Length of record key field (DS1KEYL)
20 1 Bit Flags Option codes associated with the data set (DS1OPTCD)
21 1 Bit Flags SMS Indicators (DS1SMSFG). Numbering the MSB as ″0″,

0 - Managed data set
1 - unpredictable
2 - Data set is reblockable
3 - unpredictable
4 - Data set is a PDSE
5 - unpredictable
6 - Reserved
7 - Reserved, and must be zero. (End of fields from the original
data set label).

22 2 Unsigned Binary The block size of this container data set, which contains the
unload data set.

24 20 Structure Information about the device from which the data set was
unloaded. Obtained by a DEVTYPE macro with the DEVTAB
parameter. 1

44 2 Unsigned Binary Number of header records. Zero implies 2.
46 18 reserved Zeros in ″old″ format unload data set (The following fields are

from the original data set label (Format 1 DSCB).)
46 1 reserved Must be zero
47 3 Structure Date last referenced yydddd (DS1REFD)
50 3 Structure Secondary Space Extension (DS1SCEXT)
53 4 Structure Secondary Allocation (DS1SCALO)
57 3 Structure Last Track Used TTR (DS1LSTAR)
60 2 Unsigned Binary Last Track Balance (DS1TRBAL)
62 2 reserved Must be zero (End of fields from the original data set label).
Notes:

1. These fields are highly device dependent and are required to translate absolute DASD addresses (MBBCCHHR) in
the member data records to relative addresses (TTR). The DEB control block and DEVTYPE macro are
documented in z/OS DFSMSdfp Advanced Services

Table 62. Contents of the COPYR2 Descriptor Record

Offset Into
Record

Field size
(Bytes) Type Of Data Field Contents

0 284 Structure COPYR2 - first header record
0 4 Structure Block Descriptor Word (BDW) for RECFM=VS data sets
0 2 Unsigned Binary Length of block, including BDW
2 2 reserved Must be zero
4 4 Structure Segment Descriptor Word (SDW) for RECFM=VS data sets
4 2 Unsigned Binary Length of segment, including SDW
6 2 Bit Flags Must be zero (COPYR2 record is never segmented.)

334 z/OS V2R13.0 DFSMSdfp Utilities

Table 62. Contents of the COPYR2 Descriptor Record (continued)

Offset Into
Record

Field size
(Bytes) Type Of Data Field Contents

8 16 Structure Last 16 bytes of basic section of the Data Extent Block (DEB) for
the original data set. 1

24 256 Structure First 16 extent descriptions from the original DEB. 1

280 4 reserved Must be zero
Notes:

1. These fields are highly device dependent and are required to translate absolute DASD addresses (MBBCCHHR) in
the member data records to relative addresses (TTR). The DEB control block is documented in z/OS DFSMSdfp
Advanced Services. DEVTAB information is documented inDFP System Data Administration.

Directory Block Records
The directory records are written immediately after the header records. They consist
of directory blocks containing the original directory entries for all members to be
unloaded. In addition, the last directory record contains an end-of-file block.

The length of each directory record, except the last one, is 8 + n(276), where n
represents the blocking factor (n is an integer greater than zero). The length of the
last directory record is 8 + n(276) &plus 12, where n represents the blocking factor
(which may be zero).

The directory blocks in the figure contain a count, key, and data field. The count
field is set to zero, except for the key length (X'08') and the data length (X'0100').
See z/OS DFSMS: Using Data Sets for more information about directory blocks.

Figure 51 gives the directory record format for the unloaded partitioned data set.
The following items have been assumed:

v The block size of the data set to contain the unloaded data set is 900 bytes.

v Seven pseudo directory blocks are required to contain the original directory
entries for all of the unloaded members.

Attribute Records
A PDSE contains attributes which are recorded in attribute records. Attributes that
pertain to the whole data set follow the directory records. Those which pertain to a

LL

LL

LL

11

11

11

DB

DB

DB

DB

DB

DB

DB

DB

EOF

4

4

4

4

4

4

276 bytes

276 bytes

276 bytes

276 bytes

276 bytes

276 bytes

276 bytes

276 bytes

12

1

1 The end of file
directory record
contains 12 bytes of
hexadecimal zeros.

Figure 51. Directory Record Layout

Appendix B. Unload Partitioned Data Set Format 335

member follow the member data records. The format for an unloaded attribute
record is shown in Figure 52.

Note List Records
Note list records as described below are obsolete and do not generally appear even
in old format unload data sets. Note lists are treated as member data in new format
unload data sets.

If a member to be unloaded contains a note list, the note list is unloaded preceding
the member data. The format for an unloaded note list record is shown in Figure 53
on page 337.

IEBCOPY User TTR Limits:

v Three user TTRN fields in the directory.

v Only one of these fields may have n>0.

v The maximum length of the note list record identified by the user TTRN with n>0
is 1291 bytes, including any block and record descriptor word.

v No TTRN fields in a note list record may have n>0.

v No user TTRN field in a note list record or in the partitioned data set directory
may have the leftmost bit on (that is, the most significant bit of the first “T” in
TTRN).

LL 11 F xxx CCHHRKDD Attribute Data

4 4 1 3 8 bytes variable

The original key and data portion
of the note list record as it existed
in the partitioned data set

The original count field of the note
list record as it existed in the
partitioned data set

Unused (Set to zero)

Flag Byte
X’04’ Data Set Level
X’08’ Member Level

Record descriptor word for variable
data set records

Block descriptor word for variable
data set records

Figure 52. Attribute Record Layout

336 z/OS V2R13.0 DFSMSdfp Utilities

Member Data Records
An unloaded member data record consists of the maximum number of set member
data blocks that will fit into the unload data set record. The number of blocks in
each member data record varies when the partitioned data set or PDSE has
undefined or variable length blocks. A member data record contains member data
blocks from only one member and has an end of file block after the last member
data block.

Figure 54 on page 338 is an example of the format of unloaded member data
records. The following items have been assumed:

v The block size of the partitioned data set is 350 bytes.

v There are six member data blocks per member (including the direct access
end-of-file block).

v The record syntax of the partitioned data set is fixed.

v The block size of the data set to contain the unloaded data set is 900 bytes.

LL 11 F xxx CCHHRKDD Note List

4 4 1 3 8 bytes variable

The original key and data portion
of the note list record as it existed
in the partitioned data set

The original count field of the note
list record as it existed in the
partitioned data set

Unused (Set to zero)

Flag Byte
B’111xxxxx’ identifies a note list

(xxxxx bits are reserved)

Record descriptor word for variable
data set records

Block descriptor word for variable
data set records

Figure 53. Note List Record Layout

Appendix B. Unload Partitioned Data Set Format 337

Figure 55 shows the make-up of each member data block.

Figure 56 on page 339 shows the make up of the end-of-file block that follows the
last data block of a member.

LL

LL

LL

11

11

11

MB

MB

MB

MB

MB

EOF

4

4

4

4

4

4

362 bytes

362 bytes

362 bytes

362 bytes

362 bytes

12 bytes

Figure 54. Member Data Record Layout

F MBB CCHHRKDD Member Data Block

1 3 8 bytes y bytes1 1 In this example Y=350 bytes.

The original key and data portion of the
member data block as it existed in the
partitioned data set

The original count field of the member
data block as it existed in the
partitioned data set

The original extent (M) and binary (BB)
number of the member data block as it
existed in the partitioned data set

Flag Byte
X’00’ is member data

Figure 55. Member Data Block Layout

338 z/OS V2R13.0 DFSMSdfp Utilities

F MBB CCHHRKDD

1 3 8 bytes

The original count field of the end-of-member indicator as it
existed in the partitioned data set.

The original extent (M) and binary (BB) number of the
end-of-member indicator as it existed in the partitioned data
set.

X’80’ = end of data for unloaded PDSE member
X’00’ = end of data for an unloaded member data record

Figure 56. End-of-File Block Layout

Appendix B. Unload Partitioned Data Set Format 339

340 z/OS V2R13.0 DFSMSdfp Utilities

Appendix C. Specifying User Exits with Utility Programs

This appendix documents Programming Interface and Associated Guidance
Information.

This appendix is intended to help you write user exits for utility programs.

General Guidance
Exits can be specified with various utilities to:
v Modify physical records
v Handle I/O errors
v Process user input/output header and trailer labels.

The exits are specified in a parameter of the EXITS statement in the various
utilities, except for IEBDG and IEBUPDTE. The exits available from utility programs
are listed in Table 63. The IEBISAM exit for printing is described in “Printing the
Logical Records of an ISAM Data Set” on page 191.

Table 63. User-Exit Routines Specified with Utilities

Exit Routine When Available Utilities Where Specified

Modify physical records
before processing by
IEBGENER

After the physical record is read
and before any editing is performed

IEBGENER DATA parameter of EXITS
statement

Input header or trailer
label

When the data set is opened for
input (header) or closed (trailer)

IEBCOMPR,
IEBGENER,
IEBPTPCH

INHDR/INTLR parameters of EXITS
statement

IEBUPDTE PARM parameter of the EXEC JCL
statement or INHDR, INTLR,
OUTHDR, and OUTTLR parameter
of ADD, CHANGE, REPL, or
REPRO statements.

Output header or trailer
label

When the data set is opened for
output (header) or closed (trailer)

IEBCOMPR,
IEBGENER

OUTHDR/OUTLR parameters of
EXITS statement

Totaling Prior to IEBGENER writing of each
physical record (sequential data
sets only)

IEBGENER TOTAL parameter of EXITS
statement

IEBUPDTE TOTAL parameter on the ADD,
CHANGE, REPL, or REPRO
Statements

I/O error When permanent error occurs in
IEBGENER

IEBGENER IOERROR parameter of EXITS
statement

Error detected by
IEBCOMPR

After unequal comparison IEBCOMPR ERROR parameter of EXITS
statement

Build output record key Prior to IEBGENER writing of a
record

IEBGENER KEY parameter of EXITS statement

Process logical records
of input data sets before
comparison

Before input records are processed
by IEBCOMPR

IEBCOMPR PRECOMP parameter of EXITS
statement

Process IEBPTPCH
input/output records

Before logical record is processed
(INREC) or before logical record is
written (OUTREC)

IEBPTPCH INREC/OUTREC parameters of
EXITS statement

© Copyright IBM Corp. 1979, 2002 341

Table 63. User-Exit Routines Specified with Utilities (continued)

Exit Routine When Available Utilities Where Specified

Analyze or modify
IEBDG output record

After output record is constructed,
but before it is placed in the output
data set

IEBDG EXIT parameter of CREATE
statement

Register Contents at Entry to Routines from Utility Programs

Programming Considerations
The exit routine must reside in the job library, step library, or link library.

Returning from an Exit Routine
An exit routine returns control to the utility program by means of the RETURN
macro instruction in the exit routine. Registers 1 through 14 must be restored before
control is returned to the utility program.

The format of the RETURN macro instruction is:

[label] RETURN [(r,r)]
[,RC={n|(15)}]

where:

(r,r)
specifies the range of registers, from 0 to 15, to be reloaded by the utility
program from the register save area. For example, (14,12) indicates that all
registers except register 13 are to be restored. If this parameter is omitted, the
registers are considered properly restored by the exit routine.

RC={n|(15)}
specifies a decimal return code in register 15. If RC is omitted, register 15 is
loaded as specified by (r,r).

n specifies a return code to be placed in register 15.

(15)
specifies that general register 15 already contains a valid return code.

A user label processing routine must return a code in register 15 as shown in
Table 64 unless:

v The buffer address was set to zero before entry to the label processing routine.
In this case, the system resumes normal processing regardless of the return
code.

v The user label processing routine was entered after an unrecoverable output
error occurred. In this case the system tries to resume normal processing.

Register Contents

1 Address of the parameter list.

13 Address of the register save area. The save area must not be used
by user label processing routines.

14 Return address to utility.

15 Entry address to the exit routine.

342 z/OS V2R13.0 DFSMSdfp Utilities

Table 64 shows the return codes that can be issued to utility programs by user exit
routines.

Table 64. Return Codes That Must Be Issued by User Exit Routines

Type of Exit Return Code Action

Input Header or Trailer
Label (except for
IEBUPDTE when
UPDATE=INPLACE)

0 The system resumes normal processing. If
there are more labels in the label group, they
are ignored.

4 The next user label is read into the label
buffer area and control is returned to the
user’s routine. If there are no more labels,
normal processing is resumed.

16 The utility program is ended on request of the
user routine.

Input Header or Trailer
Label for IEBUPDTE
UPDATE=INPLACE

0 The system resumes normal processing; any
additional user labels are ignored.

4 The system does not write the label. The next
user label is read into the label buffer area
and control is returned to the user exit
routine. If there are no more user labels, the
system resumes normal processing.

8 The system writes the user labels from the
label buffer area and resumes normal
processing.

12 The system writes the user label from the
label buffer area, then reads the next input
label into the label buffer area and returns
control to the label processing routine. If there
are no more user labels, the system resumes
normal processing.

Output Header or Trailer
Label

0 The system resumes normal processing. No
label is written from the label buffer area.

4 The user label is written from the label buffer
area. The system then resumes normal
processing.

8 The user label is written from the label buffer
area. If fewer than eight labels have been
created, the user’s routine again receives
control so that it can create another user
label. If eight labels have been created, the
system resumes normal processing.

16 The utility program is ended on request of the
user routine.

Totaling Exits 0 Processing continues, but no further user
exits are taken.

4 Normal operation continues.

8 Processing ceases, except for EOD
processing on output data set (user label
processing).

16 Utility program is stopped.

Appendix C. Specifying User Exits with Utility Programs 343

Table 64. Return Codes That Must Be Issued by User Exit Routines (continued)

Type of Exit Return Code Action

ERROR 0 Record is not placed in the error data set.
Processing continues with the next record.

4 Record is placed in the error data set
(SYSUT3).

8 Record is not placed in error data set but is
processed as a valid record (sent to OUTREC
and SYSUT2 if specified).

16 Utility program is ended.

OUTREC (IEBPTPCH) 4 Record is not placed in normal output data
set.

12 or 16 Utility program is ended.

Any other
number

Record is placed in normal output data set
(SYSUT2).

All other exits 0-11 (Set to
next multiple of
four)

Return code is compared to highest previous
return code; the higher is saved and the other
discarded. At the normal end of job, the
highest return code is passed to the calling
processor.

12 or 16 Utility program is stopped and this return
code is passed to the calling processor.

Parameters Passed to Label Processing Routines
The parameters passed to a user label processing routine are addresses of: the
80-byte label buffer, the DCB being processed, the status information if an
unrecoverable input/output error occurs, and the totaling area.

The 80-byte label buffer contains an image of the user label when an input label is
being processed. When an output label is being processed, the buffer contains no
significant information at entry to your label processing routine. When the utility
program has been requested to generate labels, your label processing routine must
construct a label in the label buffer.

If standard user labels (SUL) are specified on the DD statement for a data set, but
the data set has no user labels, the system still takes the specified exits to the
appropriate user routine. In such a case, the user input label processing routine is
entered with the buffer address parameter set to zero.

The format and content of the DCB are explained in z/OS DFSMS Macro
Instructions for Data Sets.

Bit 0 of flag 1 in the DCB-address parameter is set to a value of 0 except when:

v Volume trailer or header labels are being processed at volume switch time.

v The trailer labels of a DISP=MOD data set are being processed (when the data
set is opened).

If an unrecoverable input/output error occurs while reading or writing a user label,
the appropriate label processing routine is entered with bit 0 of flag 2 in the status
information address parameter set on. The three low order bytes of this parameter
contain the address of standard status information as supplied for SYNAD routines.
(The SYNAD routine is not entered.)

344 z/OS V2R13.0 DFSMSdfp Utilities

Parameters Passed to Nonlabel Processing Routines
Table 65 shows the programs from which exits can be taken to nonlabel processing
routines, the names of the exits, and the parameters available for each exit routine.

Table 65. Parameter Lists for Nonlabel Processing Exit Routines

Program Exit Parameters

IEBGENER KEY Address at which key is to be placed (record follows
key); address of DCB.

DATA Address of SYSUT1 record; address of DCB.

IOERROR Address of DECB; cause of the error and address of
DCB. (Address in lower order three bytes and cause
of error in high order byte.)

IEBCOMPR ERROR Address of DCB for SYSUT1; address of DCB for
SYSUT2.

PRECOMP Address of SYSUT1 record; length of SYSUT1 record,
address of SYSUT2 record; length of SYSUT2 record.

IEBPTPCH INREC Address of input record; length of the input record.

OUTREC Address of output record; length of the output record.

Processing User Labels
User labels can be processed by IEBCOMPR, IEBGENER, IEBPTPCH, IEBUPDTE,
and IEHMOVE. In some cases, user-label processing is automatically performed; in
other cases, you must indicate the processing to be performed. In general, you can:

v Process user labels as data set descriptors.

v Process user labels as data.

v Total the processed records before they are written (IEBGENER and IEBUPDTE
only).

For either of the first two options, you must specify SUL on the DD statement that
defines each data set for which user-label processing is desired. For totaling
routines, OPTCD=T must be specified on the DD statement.

You cannot update labels by means of the IEBUPDTE program. This function must
be performed by a user label processing routine. IEBUPDTE will, however, allow
you to create labels on the output data set from data supplied in the input stream.

IEHMOVE does not allow exits to user routines and does not recognize options
concerning the processing of user labels as data. IEHMOVE always moves or
copies user labels directly to a new data set.

Volume switch labels of a multivolume data set cannot be processed by IEHMOVE,
IEBGENER, or IEBUPDTE. Volume switch labels are lost when these utilities create
output data sets. To ensure that volume switch labels are retained, process
multivolume data sets one volume at a time.

Processing User Labels as Data Set Descriptors
When user labels are to be processed as data set descriptors, one of your label
processing routines receives control for each user label of the specified type. Your
routine can include, exclude, or modify the user label. Processing of user labels as

Appendix C. Specifying User Exits with Utility Programs 345

data set descriptors is indicated on an EXITS statement with keyword parameters
that name the label processing routine to be used.

The user exit routine receives control each time the OPEN, EOV, or CLOSE routine
encounters a user label of the type specified.

Figure 57 illustrates the action of the system at OPEN, EOV, or CLOSE time. When
OPEN, EOV, or CLOSE recognizes a user label and when SUL has been specified
on the DD statement for the data set, control is passed to the utility program. Then,
if an exit has been specified for this type of label, the utility program passes control
to the user routine. Your routine processes the label and returns control, along with
a return code, to the utility program. The utility program then returns control to
OPEN, EOV, or CLOSE.

This cycle is repeated up to eight times, depending upon the number of user labels
in the group and the return codes supplied by your routine.

Exiting to a Totaling Routine
When an exit is taken to a totaling routine, an output record is passed to the routine
just before the record is written. The first halfword of the totaling area pointed to by
the parameter contains the length of the totaling area, and should not be used by
your routine. If you have specified user label exits, this totaling area (or an image of
this area) is pointed to by the parameter list passed to the appropriate user label
routine.

An output record is defined as a physical record (block), except when IEBGENER is
used to process and reformat a data set that contains spanned records.

The code that is returned by the totaling routine determines system response, as
shown in Figure 58.

Figure 57. System Action at OPEN, EOV, or CLOSE Time

346 z/OS V2R13.0 DFSMSdfp Utilities

Processing User Labels as Data
When user labels are processed as data, the group of user labels, as well as the
data set, is subject to the normal processing done by the utility program. You can
have labels printed or punched by IEBPTPCH, compared by IEBCOMPR, or copied
by IEBGENER.

To specify that user labels are to be processed as data, include a LABELS
statement in the job step that is to process user labels as data.

There is no direct relationship between the LABELS statement and the EXITS
statement. Either or both can appear in the control statement stream for an
execution of a utility program. If there are user label-processing routines, however,
their return codes may influence the processing of the labels as data. In addition, a
user output label-processing routine can override the action of a LABELS statement
because it receives control before each output label is written. At this time, the label
created by the utility as a result of the LABELS statement is in the label buffer, and
your routine can modify it.

Using an Exit Routine with IEBDG
IEBDG provides a user exit so you can analyze or further modify a newly
constructed record before it is placed in the output data set. This exit routine is
specified on the CREATE statement.

The CREATE statement defines the contents of records to be made available to a
user routine or to be written directly as output records.

After processing each potential output record, the user routine should provide a
return code in register 15 to instruct IEBDG how to handle the output record. The
return codes are listed in Figure 59 on page 348.

When an exit routine is loaded and you return control to IEBDG, register 1 contains
the address of the first byte of the output record.

Codes Meaning

00 (X'00') Processing is to continue, but no further exits are to be taken.

04 (X'04') Normal processing is to continue.

08 (X'08') Processing is to stop, except for EOD processing on the output
data set (user label processing).

16 (X'10') Processing is to be stopped.

Figure 58. User Totaling Routine Return Codes

Appendix C. Specifying User Exits with Utility Programs 347

Codes Meaning

00 (X'00') The record is to be written.

04 (X'04') The record is not to be written. The skipped record is not to be
counted as a generated output record; processing is to continue as
though a record were written. If skips are requested through user
exits and input records are supplied, each skip causes an additional
input record to be processed in the generation of output records.
For example, if a CREATE statement specifies that 10 output
records are to be generated and a user exit indicates that two
records are to be skipped, 12 input records are processed.

12 (X'0C') The processing of the remainder of this set of utility control
statements is to be bypassed. Processing is to continue with the
next DSD statement.

16 (X'10') All processing is to halt.

Figure 59. IEBDG User Exit Return Codes

348 z/OS V2R13.0 DFSMSdfp Utilities

Appendix D. IEHLIST VTOC Listing

Figure 60 and Figure 61 on page 350 show sample outputs produced by IEHLIST.
The first sample output, Figure 60 is a listing of a volume table of contents from an
extended format sequential data set. The VTOC listing of an extended format
sequential data set will differ from that of sequential and partitioned data sets and
PDSEs. Figure 61 on page 350 is a IEHLIST VTOC listing that is typical for a
sequential or partitioned data set, or a PDSE. The primary difference between these
two kinds of VTOC listings (extended format sequential data sets and all other
types of data sets) can be found in the LST BLK field of the outputs. In addition, if
IEHLIST is producing a VTOC listing of an extended format sequential data set, the
attribute E will be included under the field SMS.IND. For more information on the
characteristics of extended format sequential data sets, see z/OS DFSMS: Using
Data Sets .

A detailed explanation of the fields in the VTOC listing follows the figures. Please
note that the explanation of the LST BLK field contains two different entries—one for
an extended format sequential data set (TTTT-R), and one for a sequential or
partitioned data set, or PDSE (T-R-L).

Please note also that the following figures are only examples of IEHLIST VTOC
listings. Your actual VTOC listing produced by IEHLIST will differ.

SYSTEMS SUPPORT UTILITIES---IEHLIST PAGE 1
DATE: 1992.260 TIME: 17.13.16

CONTENTS OF VTOC ON VOL 1P0401 <THIS IS AN SMS MANAGED VOLUME>
---------------DATA SET NAME---------------- SER NO SEQNO DATE.CRE DATE.EXP DATE.REF EXT DSORG RECFM OPTCD BLKSIZE
EXAMPLE.OF.FORMAT 1P0401 1 1992.260 00.000 1992.260 20 PS F 00 20480
SMS.IND LRECL KEYLEN INITIAL ALLOC 2ND ALLOC EXTEND LAST BLK(TTTT-R) DIR.REM F2 OR F3(C-H-R) DSCB(C-H-R)
S E 20480 TRKS 1 19 2 0 1 6 0 1 4

EXTENTS NO LOW(C-H) HIGH(C-H) NO LOW(C-H) HIGH(C-H) NO LOW(C-H) HIGH(C-H)
0 0 4 0 4 1 1 0 1 0 2 1 1 1 1
3 1 5 1 5 4 1 6 1 6 5 1 7 1 7
6 1 8 1 8 7 1 9 1 9 8 1 10 1 10
9 1 11 1 11 10 1 12 1 12 11 1 13 1 13

12 1 14 1 14 13 2 0 2 0 14 2 1 2 1
15 2 2 2 2
16 2 3 2 3 17 2 4 2 4 18 2 5 2 5
19 2 6 2 6

----ON THE ABOVE DATA SET,THERE ARE 0 EMPTY TRACK(S).

Figure 60. IEHLIST Sample Output—VTOC (for extended format sequential data sets)

© Copyright IBM Corp. 1979, 2002 349

Explanation of Fields in IEHLIST Formatted VTOC Listing

Field Explanation

BLKSIZE Block size, in bytes, up to 32760 or device maximum.
v For fixed-length records, block size is set.
v For variable or undefined-length records, maximum block size is indicated.
v Format V unblocked records have a block size 4 greater than the LRECL value.

DATA SET NAME Maximum length 44 bytes.

DATE.CRE Creation date for the data set, in the Julian form yyyy.ddd, where ddd is the day and yyyy is
the year from 1900 to 2155.

DATE.EXP Expiration date for the data set, in the Julian form yyyy.ddd, where ddd is the day and yyyy
is the year from 1900 to 2155.

DATE.REF Last referenced date for the data set, in the Julian form yyyy.ddd where ddd is the day and
yyyy is the year from 1900 to 2155.

DIR.REM In a partitioned data set in which the last directory block is being used, this value will be the
number of bytes consumed in that 256-byte block. If no value appears here, the partitioned
data set has not yet reached the last directory block.

DSORG Data set organization (by access method):
v DA = Direct (BDAM)
v IS = Indexed Sequential (ISAM, QISAM, BISAM)
v PO = Partitioned (BPAM)
v PS = Physical Sequential (SAM, QSAM, BSAM)

The following condition may also appear after any of the above organizations:
v U = Unmovable (location-dependent).

EXT Number of extents (sections) the data set has on this volume.

SYSTEMS SUPPORT UTILITIES---IEHLIST PAGE 1

DATE: 1987.284 TIME: 18.44.59
CONTENTS OF VTOC ON VOL EXAMPL <THIS IS AN SMS MANAGED VOLUME>

THERE IS A 1 LEVEL VTOC INDEX

FORMAT 4 DSCB NO AVAIL/MAX DSCB /MAX DIRECT NO AVAIL NEXT ALT FORMAT 6 LAST FMT 1 VTOC EXTENT THIS DSCB
VI DSCBS PER TRK BLK PER TRK ALT TRK TRK(C-H) (C-H-R) DSCB(C-H-R)/LOW(C-H) HIGH(C-H) (C-H-R)
81 1587 53 46 15 885 0 3 14 53 2 0 3 14 2 0 1

---------------DATA SET NAME---------------- SER NO SEQNO DATE.CRE DATE.EXP DATE.REF EXT DSORG RECFM OPTCD BLKSIZE
EXAMPLE.OF.FORMAT EXAMPL 1 1987.284 00.000 00.000 1 PS F 00 2048

SMS.IND LRECL KEYLEN INITIAL ALLOC 2ND ALLOC EXTEND LAST BLK(T-R-L) DIR.REM F2 OR F3(C-H-R) DSCB(C-H-R)
SR 2048 TRKS CONTIG 0 28 18 0 2 0 3

EXTENTS NO LOW(C-H) HIGH(C-H)
0 0 1 1 14

----ON THE ABOVE DATA SET, THERE ARE 0 EMPTY TRACK(S).

VPSM A = NUMBER OF TRKS IN ADDITION TO FULL CYLS IN THE EXTENT
TRK FULL TRK FULL TRK FULL TRK FULL TRK FULL TRK FULL
ADDR CYLS A ADDR CYLS A ADDR CYLS A ADDR CYLS A ADDR CYLS A ADDR CYLS A
6C 881 0

THERE ARE 881 EMPTY CYLINDERS PLUS 0 EMPTY TRACKS ON THIS VOLUME
THERE ARE 1587 BLANK DSCBS IN THE VTOC ON THIS VOLUME
THERE ARE 518 UNALLOCATED VIRS IN THE INDEX

Figure 61. IEHLIST Sample Output—VTOC (for sequential, partitioned data sets and PDSEs)

350 z/OS V2R13.0 DFSMSdfp Utilities

Field Explanation

EXTEND Original secondary allocation quantity if type of space request was bytes, kilobytes or
megabytes. Original average block length if type of space request was average block. The
actual secondary value is followed by one of the following 2-character identifiers:
v AV Average block length
v BY Original secondary quantity in bytes
v KB Original secondary quantity in kilobytes
v MB Original secondary quantity in megabytes

EXTENT NO LOW
(C-H) HIGH (C-H)

The cylinder and head (track) address of each extent.

FMT 2 OR 3
(C-H-R)/DSCB (C-H-R)

Two addresses are possible here, each pointing to a data set control block (DSCB) in the
VTOC. The cylinder-head(track)-record address on the right always appears and points to the
DSCB whose partial contents you are now looking at: the Format 1 DSCB.

There may also be a Format 2 or Format 3 DSCB associated with it. The Format 3 address
will be present only for data sets that have exceeded three extents, such that a Format 3
DSCB must be used to contain information about the additional extents. For ISAM data sets,
which cannot exceed one extent, the address on the left will point to a Format 2 DSCB.

INITIAL ALLOC Describes the space attribute that was used for allocating all data set extents.
v RECS = average block size
v TRKS = Tracks
v BLKS = Blocks
v CYLS = Cylinders
v ABSTR = Absolute tracks (absolute addresses)

KEYLEN Byte length (1-255) of the key of the data records in this data set. 0 indicates that no key
exists.

LAST BLK PTR
(T-R-L)

Points to the last block written in a sequential or partitioned data set or PDSE. The first
number (two digits in this example) is the track, relative to the beginning of the data set. The
second number is the block, relative to the beginning of the track. The last number is the
number of bytes remaining on the track following that block. If the data set is a PDSE, then
the field may be blank.

LAST BLK PTR
(TTTT-R)

Points to the last block written in an extended format sequential data set. The first number
(four bytesbut two bytes in this example) is the track, relative to the beginning of the data set.
The second number is the block, relative to the beginning of the track.

LRECL Logical record length, in bytes, up to 32760 for nonspanned and 32756 for spanned records.
v For fixed-length records, LRECL is the actual record length.
v For variable-length records, LRECL is the maximum length permitted by the device.
v For undefined-length records, LRECL is zero.

OPTCD Option code (as supplied in the DCB used to create the data set). This 1-byte code is given
in hexadecimal characters. See the DS1OPTCD field in the DSCB1 data area in z/OS
DFSMSdfp Advanced Services.

RECFM Record format:
v F = Fixed length
v V = Variable length
v D = ASCII variable length (not valid on disk)
v U = Undefined length.

The following options may also be specified:
v B = Blocked records
v S = Spanned records
v T = Track overflow permitted
v A = ISO/ANSI control characters
v M = Machine control characters.

SEQNO Order of this volume relative to the first volume containing the data set. (SEQ NO will be
equal to 1, unless this is a multivolume data set.)

Appendix D. IEHLIST VTOC Listing 351

Field Explanation

SER NO Serial number of volume containing the data set. Maximum length 6 bytes. (The serial
number may vary if the volume has been renamed since the data set was written, but thiis
field should be the same for each format 1 DSCB for the data set.)

SMS.IND System-managed storage attributes.
v B = Optimal block size selected by DADSM create
v C = Compressed format
v E = Extended format
v I = Data set is a PDSE or USS data set (not a USS file)
v R = Data set is reblockable
v S = SMS-managed data set
v U = No BCS entry exists for data set
v ? = One of the following:

– PDSE and extended format sequential data sets cannot coexist. Both bits are on.

– extended format sequential data set bit must be on when the compressed extended
format data set bit is on.

2ND ALLOC Secondary allocation quantity. If zero, the data set is limited to its primary allocated extent;
otherwise, it can expand as necessary into many more extents, each of which is this number
of blocks, tracks, or cylinders in size. There are various limits.

The following fields apply to ISAM data sets only.

Field Explanation

ADHIN (M-B-C-H) Address of the first track of the highest-level master index. The last two fields, C and H, are
the cylinder and head (track) address.

ADLIN (M-B-C-H) Address of the first track of the lowest-level master index. The last two fields, C and H, are
the cylinder and head (track) address.

CYLAD (M-B-C-H) Address of the first track of the cylinder index. The last two fields, C and H, are the cylinder
and head (track) address.

CYLOV Number of tracks reserved for cylinder overflow area on each cylinder.

LCYAD (C-H-R) Address of the last index entry in the cylinder index, by cylinder, head (track), and record
number.

LMSAD (C-H-R) Address of the last index entry in the master index, by cylinder, head (track), and record
number.

LPRAD (M-B-C-H-R) Address of the last record in the prime data area. The last three fields, C, H, and R, are the
cylinder, head (track), and record numbers.

LTRAD (C-H-R) Address of the last normal entry in the track index on the cylinder containing the last prime
data record of the data set, by cylinder, head (track), and record number.

L2MIN (C-H-R) Address of the last active index entry in the second-level master index, by cylinder, head
(track), and record number.

L3MIN Address of the last active index entry in the third-level master index, by cylinder, head (track),
and record number.

NOBYT Number of bytes needed to hold the highest-level index in main storage.

NOLEV Number of index levels.

NOTRK Number of tracks occupied by the highest-level index.

OVRCT Number of records in the overflow area.

PRCTR Number of records in the prime data area.

PTRDS (C-H-R) Pointer to Format 3 DSCB if a continuation is needed to describe this data set. C, H, and R
are the cylinder, head (track), and record numbers.

RORG1 Number of cylinder overflow areas that are full.

352 z/OS V2R13.0 DFSMSdfp Utilities

Field Explanation

TAGDT The user-supplied number of records tagged for deletion. This field is merged to and from the
DCB for BISAM, QSAM scan mode, and resume-load.

2MIND (M-B-C-H) Address of the first track of the second-level master index (if present). The last two fields, C
and H, are the cylinder and head (track) address.

3MIND (M-B-C-H) Address of the first track of the third-level master index (if present). The last two fields, C and
H, are the cylinder and head (track) address.

Appendix D. IEHLIST VTOC Listing 353

354 z/OS V2R13.0 DFSMSdfp Utilities

Appendix E. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1979, 2002 355

356 z/OS V2R13.0 DFSMSdfp Utilities

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

© Copyright IBM Corp. 1979, 2002 357

IBM Corporation
Information Enabling Requests
Dept. DZWA
5600 Cottle Road
San Jose, CA 95193 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Programming Interface Information
This book is intended to help you use the DFSMS utility programs.

This book also documents General-use Programming Interface and Associated
Guidance Information provided by DFSMS. General-use programming interfaces
allow the customer to write programs that obtain the services of DFSMS.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking: General-use Programming Interface and
Associated Guidance Information.

This book contains no programming interface information except where stated
otherwise. That exception is Appendixes A, B, and C.

Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States, other countries, or both:

3890
DFSMS
DFSMS/MVS
DFSMSdfp
DFSMSdss
DFSORT

ESCON
IBM
MVS
MVS/ESA
OS/390
RACF

Other company, product, and service names may be trademarks or service marks
of others.

358 z/OS V2R13.0 DFSMSdfp Utilities

Glossary

This glossary defines technical terms and
abbreviations used in DFSMS documentation. If
you do not find the term you are looking for, refer
to the index of the appropriate DFSMS manual or
view the IBM Dictionary of Computing Terms
located at:

http://www.ibm.com/ibm/terminology/

This glossary includes terms and definitions from:

v The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are identified
by the symbol (A) after the definition.

v The Information Technology Vocabulary
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published part of this
vocabulary are identified by the symbol (I) after
the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

v The IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

The following cross-reference is used in this
glossary:

See: This refers the reader to (a) a related
term, (b) a term that is the expanded form
of an abbreviation or acronym, or (c) a
synonym or more preferred term.

A
active control data set (ACDS). A VSAM linear data
set that contains a copy of the most recently activated
SMS configuration and subsequent updates. The ACDS
is shared by each system that is using the same SMS
configuration to manage storage. See also source
control data set and communications data set.

active data. (1) Data that can be accessed without
any special action by the user, such as data on primary
storage or migrated data. Active data also can be stored
on tape volumes. (2) For tape mount management,
application data that is frequently referenced, small in
size, and managed better on DASD than on tape. (3)
Contrast with inactive data.

aggregate backup. The process of copying an
aggregate group and recovery instructions so that a
collection of data sets can be recovered later as a
group.

aggregate group. A collection of related data sets and
control information that have been pooled to meet a
defined backup or recovery strategy.

automated tape library data server. A device
consisting of robotic components, cartridge storage
areas, tape subsystems, and controlling hardware and
software, together with the set of tape volumes that
reside in the library and can be mounted on the library
tape drives. Contrast with manual tape library. See also
tape library.

automatic backup. (1) In DFSMShsm, the process of
automatically copying data sets from primary storage
volumes or migration volumes to backup volumes. (2) In
OAM, the process of automatically copying a primary
copy of an object from DASD, optical, or tape volume to
a backup volume contained in an object backup storage
group.

automatic class selection (ACS) routine. A
procedural set of ACS language statements. Based on
a set of input variables, the ACS language statements
generate the name of a predefined SMS class, or a list
of names of predefined storage groups, for a data set.

automatic data set protection (ADSP). In z/OS, a
user attribute that causes all permanent data sets
created by the user to be automatically defined to RACF
with a discrete RACF profile.

automatic dump. In DFSMShsm, the process of using
DFSMSdss automatically to do a full-volume dump of all
allocated space on a primary storage volume to
designated tape dump volumes.

automatic primary space management insert. In
DFSMShsm, the process of deleting expired data sets,
deleting temporary data sets, releasing unused space,
and migrating data sets from primary storage volumes
automatically.

automatic secondary space management. In
DFSMShsm, the process of automatically deleting
expired migrated data sets, deleting expired records

© Copyright IBM Corp. 1979, 2002 359

from the migration control data sets, and migrating
eligible data sets from migration level 1 volumes to
migration level 2 volumes.

automatic volume space management. In
DFSMShsm, the process that includes automatic
primary space management and interval migration.

availability. For a storage subsystem, the degree to
which a data set or object can be accessed when
requested by a user.

B
backup. The process of creating a copy of a data set
or object to be used in case of accidental loss.

base configuration. The part of an SMS configuration
that contains general storage management attributes,
such as the default management class, default unit, and
default device geometry. It also identifies the systems or
system groups that an SMS configuration manages.

basic catalog structure (BCS). The name of the
catalog structure in the integrated catalog facility
environment. See also integrated catalog facility catalog.

binder. The DFSMS program that processes the
output of language translators and compilers into an
executable program (load module or program object). It
replaces the linkage editor and batch loader in z/OS.

C
cache fast write. A storage control capability in which
the data is written directly to cache without using
nonvolatile storage. Cache fast write is useful for
temporary data or data that is readily recreated, such as
the sort work files created by DFSORT. Contrast with
DASD fast write.

capacity planning. The process of forecasting and
calculating the appropriate amount of physical
computing resources required to accommodate an
expected workload.

Cartridge System Tape. The base tape cartridge
media used with 3480 or 3490 Magnetic Tape
Subsystems. Contrast with Enhanced Capacity
Cartridge System Tape.

class transition. An event that brings about change to
an object’s service-level criteria, causing OAM to invoke
ACS routines to assign a new storage class or
management class to the object.

compress. (1) To reduce the amount of storage
required for a given data set by having the system
replace identical words or phrases with a shorter token
associated with the word or phrase. (2) To reclaim the
unused and unavailable space in a partitioned data set

that results from deleting or modifying members by
moving all unused space to the end of the data set.

communications data set (COMMDS). The primary
means of communication among systems governed by
a single SMS configuration. The COMMDS is a VSAM
linear data set that contains the name of the ACDS and
current utilization statistics for each system–managed
volume, which helps balance space among systems
running SMS. See also active control data set and
source control data set.

concurrent copy. A function to increase the
accessibility of data by enabling you to make a
consistent backup or copy of data concurrent with the
usual application program processing.

connectivity. (1) The considerations regarding how
storage controls are joined to DASD and processors to
achieve adequate data paths (and alternative data
paths) to meet data availability needs. (2) In a
system-managed storage environment, the system
status of volumes and storage groups.

convert in place. See in-place conversion.

D
DASD fast write. An extended function of some
models of the IBM 3990 Storage Control in which data
is written concurrently to cache and nonvolatile storage
and automatically scheduled for destaging to DASD.
Both copies are retained in the storage control until the
data is completely written to the DASD, providing data
integrity equivalent to writing directly to the DASD. Use
of DASD fast write for system-managed data sets is
controlled by storage class attributes to improve
performance. See also dynamic cache management.
Contrast with cache fast write.

DASD volume. A DASD space identified by a common
label and accessed by a set of related addresses. See
also volume, primary storage, migration level 1,
migration level 2.

data class. A collection of allocation and space
attributes, defined by the storage administrator, that are
used to create a data set.

Data Facility Sort. An IBM licensed program that is a
high-speed data processing utility. DFSORT provides an
efficient and flexible way to handle sorting, merging, and
copying operations, as well as providing versatile data
manipulation at the record, field, and bit level.

data set. In DFSMS, the major unit of data storage
and retrieval, consisting of a collection of data in one of
several prescribed arrangements and described by
control information to which the system has access. In
z/OS non-UNIX environments, the terms data set and
file are generally equivalent and sometimes are used

360 z/OS V2R13.0 DFSMSdfp Utilities

interchangeably. See also file. In z/OS UNIX
environments, the terms data set and file have quite
distinct meanings.

default device geometry. Part of the SMS base
configuration, it identifies the number of bytes per track
and the number of tracks per cylinder for converting
space requests made in tracks or cylinders into bytes,
when no unit name has been specified.

default management class. Part of the SMS base
configuration, it identifies the management class that
should be used for system-managed data sets that do
not have a management class assigned.

default unit. Part of the SMS base configuration, it
identifies an esoteric (such as SYSDA) or generic (such
as 3390) device name. If a user omits the UNIT
parameter on the JCL or the dynamic allocation
equivalent, SMS applies the default unit if the data set
has a disposition of MOD or NEW and is not
system-managed.

Device Support Facilities (ICKDSF). A program used
for initialization of DASD volumes and track recovery.

DFSMS environment. An environment that helps
automate and centralize the management of storage.
This is achieved through a combination of hardware,
software, and policies. In the DFSMS environment for
MVS, this function is provided by DFSMS, DFSORT,
and RACF. See also system-managed storage.

DFSMSdfp. A DFSMS functional component or base
element of z/OS, that provides functions for storage
management, data management, program
management, device management, and distributed data
access.

DFSMSdss. A DFSMS functional component or base
element of z/OS, used to copy, move, dump, and
restore data sets and volumes.

DFSMShsm. A DFSMS functional component or base
element of z/OS, used for backing up and recovering
data, and managing space on volumes in the storage
hierarchy.

DFSMShsm-managed volume. (1) A primary storage
volume, which is defined to DFSMShsm but which does
not belong to a storage group. (2) A volume in a storage
group, which is using DFSMShsm automatic dump,
migration, or backup services. Contrast with
system-managed volume, DFSMSrmm-managed
volume.

DFSMShsm control data set. In DFSMShsm, one of
three VSAM key-sequenced data sets that contain
records used in DFSMShsm processing. See also
backup control data set, migration control data set,
offline control data set.

DFSMS. See Data Facility Storage Management
Subsystem.

DFSMSrmm. A DFSMS functional component or base
element of z/OS, that manages removable media.

DFSMSrmm-managed volume. A tape volume that is
defined to DFSMSrmm. Contrast with system-managed
volume, DFSMShsm-managed volume.

drive definition. A set of attributes used to define an
optical disk drive as a member of a real optical library or
pseudo optical library.

dual copy. A high availability function made possible
by nonvolatile storage in some models of the IBM 3990
Storage Control. Dual copy maintains two functionally
identical copies of designated DASD volumes in the
logical 3990 subsystem, and automatically updates both
copies every time a write operation is issued to the dual
copy logical volume.

dummy storage group. A type of storage group that
contains the serial numbers of volumes no longer
connected to a system. Dummy storage groups allow
existing JCL to function without having to be changed.
See also storage group.

dump class. A set of characteristics that describes
how volume dumps are managed by DFSMShsm.

duplexing. The process of writing two sets of identical
records in order to create a second copy of data.

dynamic cache management. A function that
automatically determines which data sets will be cached
based on the 3990 subsystem load, the characteristics
of the data set, and the performance requirements
defined by the storage administrator.

E
Enhanced Capacity Cartridge System Tape.
Cartridge system tape with increased capacity that can
only be used with 3490E Magnetic Tape Subsystems.
Contrast with Cartridge System Tape.

error recovery. A procedure for copying, storing, and
recovering data essential to an installation’s business in
a secure location, and for recovering that data in the
event of an error at installation. Contrast with vital
records.

esoteric unit name. A name used to define a group of
devices having similar hardware characteristics, such as
TAPE or SYSDA. Contrast with generic unit name.

expiration. (1) The process by which data sets or
objects are identified for deletion because their
expiration date or retention period has passed. On
DASD, data sets and objects are deleted. On tape,
when all data sets have reached their expiration date,
the tape volume is available for reuse. (2) In

Glossary 361

DFSMSrmm, all volumes have an expiration date or
retention period set for them either by vital record
specification policy, by user-specified JCL when writing
a data set to the volume, or by an installation default.
When a volume reaches its expiration date or retention
period, it becomes eligible for release.

extended format. The format of a data set that has a
data set name type (DSNTYPE) of EXTENDED. The
data set is structured logically the same as a data set
that is not in extended format but the physical format is
different. Data sets in extended format can be striped or
compressed. Data in an extended format VSAM KSDS
can be compressed. See also striped data set,
compressed format.

F
filtering. The process of selecting data sets based on
specified criteria. These criteria consist of fully or
partially-qualified data set names or of certain data set
characteristics.

G
generic unit name. A name assigned to a class of
devices with the same geometry (such as 3390).
Contrast with esoteric unit name.

global access checking. In RACF, the ability to
establish an in-storage table of default values containing
authorization levels for selected resources. RACF refers
to this table prior to performing its usual RACHECK
processing, and grants the request without performing a
RACHECK if the requested access authority does not
exceed the global value. Global access checking can
grant a user access to the resource, but it cannot deny
access.

global resource serialization (GRS). A component of
z/OS used for serializing use of system resources and
for converting hardware reserves on DASD volumes to
data set enqueues.

group. (1) With respect to partitioned data sets, a
member and the member’s aliases that exist in a PDS
or PDSE, or in an unloaded PDSE. (2) A collection of
users who can share access authorities for protected
resources.

H
Hardware Configuration Definition (HCD). An
interactive interface in MVS/ESA SP that enables an
installation to define hardware configurations from a
single point of control.

I
implementation by milestone. A conversion approach
that allows for a staged conversion of your installation’s
data to system-managed storage on DASD, tape, or
optical devices.

improved data recording capability (IDRC). A
recording mode that can increase the effective cartridge
data capacity and the effective data rate when enabled
and used. IDRC is always enabled on the 3490E
Magnetic Tape Subsystem.

inactive data. (1) A copy of active data, such as vital
records or a backup copy of a data set. Inactive data is
never changed, but can be deleted or superseded by
another copy. (2) In tape mount management, data that
is written once and never used again. The majority of
this data is point-in-time backups. (3) Objects
infrequently accessed by users and eligible to be moved
to the optical library or shelf. (4) Contrast with active
data.

indexed VTOC. A volume table of contents with an
index that contains a list of data set names and free
space information, which allows data sets to be located
more efficiently.

in-place conversion. The process of bringing a
volume and the data sets it contains under the control
of SMS without data movement, using DFSMSdss.

integrated catalog facility catalog. A catalog that is
composed of a basic catalog structure (BCS) and its
related volume tables of contents (VTOCs) and VSAM
volume data sets (VVDSs). See also basic catalog
structure, VSAM volume data set.

Interactive Storage Management Facility (ISMF).
The interactive interface of DFSMS that allows users
and storage administrators access to the storage
management functions.

interval migration. In DFSMShsm, automatic
migration that occurs when a threshold level of
occupancy is reached or exceeded on a
DFSMShsm-managed volume, during a specified time
interval. Data sets are moved from the volume, largest
eligible data set first, until the low threshold of
occupancy is reached.

M
management class. A collection of management
attributes, defined by the storage administrator, used to
control the release of allocated but unused space; to
control the retention, migration, and backup of data
sets; to control the retention and backup of aggregate
groups, and to control the retention, backup, and class
transition of objects.

362 z/OS V2R13.0 DFSMSdfp Utilities

manual tape library. Installation-defined set of tape
drives defined as a logical unit together with the set of
system-managed volumes which can be mounted on
the drives.

migration. The process of moving unused data to
lower cost storage in order to make space for
high-availability data. If you wish to use the data set, it
must be recalled. See also migration level 1, migration
level 2.

migration level 1. DFSMShsm-owned DASD volumes
that contain data sets migrated from primary storage
volumes. The data can be compressed. See also
storage hierarchy. Contrast with primary storage,
migration level 2.

migration level 2. DFSMShsm-owned tape or DASD
volumes that contain data sets migrated from primary
storage volumes or from migration level 1 volumes. The
data can be compressed. See also storage hierarchy.
Contrast with primary storage, migration level 1.

MVS/ESA. Multiple Virtual Storage/Enterprise Systems
Architecture. A z/OS operating system environment that
supports ESA/390.

MVS/ESA SP. An IBM licensed program used to
control the z/OS operating system. MVS/ESA SP
together with DFSMS compose the base MVS/ESA
operating environment. See also z/OS.

N
nondisruptive installation. A capability that allows
users to access data in an existing storage subsystem
while installing additional devices in the subsystem.

nonvolatile storage (NVS). Additional random access
electronic storage with a backup battery power source,
available with an IBM Cache Storage Control, used to
retain data during a power outage. Nonvolatile storage,
accessible from all storage directors, stores data during
DASD fast write and dual copy operations.

O
OAM-managed volumes. Optical or tape volumes
controlled by the object access method (OAM).

object. A named byte stream having no specific format
or record orientation.

object access method (OAM). An access method
that provides storage, retrieval, and storage hierarchy
management for objects and provides storage and
retrieval management for tape volumes contained in
system-managed libraries.

object backup storage group. A type of storage
group that contains optical or tape volumes used for
backup copies of objects. See also storage group.

object directory tables. A collection of DB2 tables
that contain information about the objects that have
been stored in an object storage group.

object storage group. A type of storage group that
contains objects on DASD, tape, or optical volumes.
See also storage group.

object storage hierarchy. A hierarchy consisting of
objects stored in DB2 table spaces on DASD, on optical
or tape volumes that reside in a library, and on optical
or tape volumes that reside on a shelf. See also storage
hierarchy.

object storage tables. A collection of DB2 tables that
contain objects.

optical disk drive. The mechanism used to seek,
read, and write data on an optical disk. An optical disk
drive can be operator-accessible or library-resident.

optical library. A storage device that houses optical
drives and optical cartridges, and contains a mechanism
for moving optical disks between a cartridge storage
area and optical disk drives.

optical volume. Storage space on an optical disk,
identified by a volume label. See also volume.

P
partitioned data set (PDS). A data set on direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data.

partitioned data set extended (PDSE). A
system-managed data set that contains an indexed
directory and members that are similar to the directory
and members of partitioned data sets. A PDSE can be
used instead of a partitioned data set.

partitioned data set unloaded (PDSU). An IEBCOPY
unload data set. A sequential file that can be restored
by IEBCOPY to create a PDS.

performance. (1) A measurement of the amount of
work a product can produce with a given amount of
resources. (2) In a system-managed storage
environment, a measurement of effective data
processing speed with respect to objectives set by the
storage administrator. Performance is largely
determined by throughput, response time, and system
availability.

permanent data set. A user-named data set that is
normally retained for longer than the duration of a job or
interactive session. Contrast with temporary data set.

pool storage group. A type of storage group that
contains system-managed DASD volumes. Pool storage
groups allow groups of volumes to be managed as a
single entity. See also storage group.

Glossary 363

primary space allocation. Amount of space
requested by a user for a data set when it is created.
Contrast with secondary space allocation.

primary storage. A DASD volume available to users
for data allocation. The volumes in primary storage are
called primary volumes. See also storage hierarchy.
Contrast with migration level 1, migration level 2.

program object. All or part of a computer program in
a form suitable for loading into virtual storage for
execution. Program objects are stored in PDSE program
libraries and have fewer restrictions than load modules.
Program objects are produced by the binder.

pseudo optical library. A set of shelf-resident optical
volumes associated with an operator-accessible optical
disk drive; see also real optical library.

R
real optical library. Physical storage device that
houses optical disk drives and optical cartridges, and
contains a mechanism for moving optical disks between
a cartridge storage area and optical disk drives.
Contrast with pseudo optical library.

recovery. The process of rebuilding data after it has
been damaged or destroyed, often by using a backup
copy of the data or by reapplying transactions recorded
in a log.

removable media library. The volumes that are
available for immediate use, and the shelves where they
could reside.

Resource Access Control Facility (RACF). An IBM
licensed program that is included in z/OS Security
Server and is also available as a separate program for
the z/OS and VM environments. RACF provides access
control by identifying and verifying the users to the
system, authorizing access to protected resources,
logging detected unauthorized attempts to enter the
system, and logging detected accesses to protected
resources.

Resource Measurement Facility (RMF). An IBM
licensed program or optional element of z/OS, that
measures selected areas of system activity and
presents the data collected in the format of printed
reports, system management facilities (SMF) records, or
display reports. Use RMF to evaluate system
performance and identify reasons for performance
problems.

S
secondary space allocation. Amount of additional
space requested by the user for a data set when
primary space is full. Contrast with primary space
allocation.

sequential data striping. A software implementation
of a disk array that distributes data sets across multiple
volumes to improve performance.

service-level agreement. (1) An agreement between
the storage administration group and a user group
defining what service-levels the former will provide to
ensure that users receive the space, availability,
performance, and security they need. (2) An agreement
between the storage administration group and
operations defining what service-level operations will
provide to ensure that storage management jobs
required by the storage administration group are
completed.

Service Level Reporter (SLR). An IBM licensed
program that provides the user with a coordinated set of
tools and techniques and consistent information to help
manage the data processing installation. For example,
SLR extracts information from SMF, IMS, and CICS
logs, formats selected information into tabular or graphic
reports, and gives assistance in maintaining database
tables.

shelf. A place for storing removable media, such as
tape and optical volumes, when they are not being
written to or read.

shelf location. (1) A single space on a shelf for
storage of removable media. (2) In DFSMSrmm, a shelf
location is defined in the removable media library by a
rack number, and in a storage location, it is defined by a
bin number. See also rack number, bin number.

SMS configuration. A configuration base, Storage
Management Subsystem class, group, library, and drive
definitions, and ACS routines that the Storage
Management Subsystem uses to manage storage. See
also configuration, base configuration, source control
data set .

source control data set (SCDS). A VSAM linear data
set containing an SMS configuration. The SMS
configuration in an SCDS can be changed and validated
using ISMF. See also active control data set,
communications data set.

storage administration group. A centralized group
within the data processing center that is responsible for
managing the storage resources within an installation.

storage administrator. A person in the data
processing center who is responsible for defining,
implementing, and maintaining storage management
policies.

storage class. A collection of storage attributes that
identify performance goals and availability requirements,
defined by the storage administrator, used to select a
device that can meet those goals and requirements.

storage control. The component in a storage
subsystem that handles interaction between processor

364 z/OS V2R13.0 DFSMSdfp Utilities

channel and storage devices, runs channel commands,
and controls storage devices.

storage director. In a 3990 Storage Control, a logical
entity consisting of one or more physical storage paths
in the same storage cluster. In a 3880, a storage
director is equivalent to a storage path.

storage group. A collection of storage volumes and
attributes, defined by the storage administrator. The
collections can be a group of DASD volumes or tape
volumes, or a group of DASD, optical, or tape volumes
treated as a single object storage hierarchy. See also
VIO storage group, pool storage group, tape storage
group, object storage group, object backup storage
group, dummy storage group.

storage group category. A grouping of specific
storage groups which contain the same type of data.
This concept is analogous to storage pools in a
non-system-managed environment.

storage hierarchy. An arrangement of storage devices
with different speeds and capacities. The levels of the
storage hierarchy include main storage (memory, DASD
cache), primary storage (DASD containing
uncompressed data), migration level 1 (DASD
containing data in a space-saving format), and migration
level 2 (tape cartridges containing data in a
space-saving format). See also primary storage,
migration level 1, migration level 2, object storage
hierarchy.

storage location. A location physically separate from
the removable media library where volumes are stored
for disaster recovery, backup, and vital records
management.

storage management. The activities of data set
allocation, placement, monitoring, migration, backup,
recall, recovery, and deletion. These can be done either
manually or by using automated processes. The
Storage Management Subsystem automates these
processes for you, while optimizing storage resources.
See also Storage Management Subsystem.

Storage Management Subsystem (SMS). A DFSMS
facility used to automate and centralize the
management of storage. Using SMS, a storage
administrator describes data allocation characteristics,
performance and availability goals, backup and
retention requirements, and storage requirements to the
system through data class, storage class, management
class, storage group, and ACS routine definitions.

storage subsystem. A storage control and its
attached storage devices. See also tape subsystem.

stripe. In DFSMS, the portion of a striped data set,
such as an extended format data set, that resides on
one volume. The records in that portion are not always
logically consecutive. The system distributes records
among the stripes such that the volumes can be read

from or written to simultaneously to gain better
performance. Whether it is striped is not apparent to the
application program.

system data. The data sets required by z/OS or its
subsystems for initialization and control.

system-managed data set. A data set that has been
assigned a storage class.

system-managed storage. Storage managed by the
Storage Management Subsystem. SMS attempts to
deliver required services for availability, performance,
and space to applications. See also system-managed
storage environment.

system-managed tape library. A collection of tape
volumes and tape devices, defined in the tape
configuration database. A system-managed tape library
can be automated or manual. See also tape library.

system-managed volume. A DASD, optical, or tape
volume that belongs to a storage group. Contrast with
DFSMShsm-managed volume, DFSMSrmm-managed
volume.

system management facilities (SMF). A component
of z/OS that collects input/output (I/O) statistics,
provided at the data set and storage class levels, which
helps you monitor the performance of the direct access
storage subsystem.

system programmer. A programmer who plans,
generates, maintains, extends, and controls the use of
an operating system and applications with the aim of
improving overall productivity of an installation.

T
tape configuration database. One or more volume
catalogs used to maintain records of system-managed
tape libraries and tape volumes.

tape librarian. The person who manages the tape
library. This person is a specialized storage
administrator.

tape library. A set of equipment and facilities that
support an installation’s tape environment. This can
include tape storage racks, a set of tape drives, and a
set of related tape volumes mounted on those drives.
See also system-managed tape library, automated tape
library data server.

Tape Library Dataserver. A hardware device that
maintains the tape inventory that is associated with a
set of tape drives. An automated tape library dataserver
also manages the mounting, removal, and storage of
tapes.

Glossary 365

tape mount management. The methodology used to
optimize tape subsystem operation and use, consisting
of hardware and software facilities used to manage tape
data efficiently.

tape storage group. A type of storage group that
contains system-managed private tape volumes. The
tape storage group definition specifies the
system-managed tape libraries that can contain tape
volumes. See also storage group.

tape subsystem. A magnetic tape subsystem
consisting of a controller and devices, which allows for
the storage of user data on tape cartridges. Examples
of tape subsystems include the IBM 3490 and 3490E
Magnetic Tape Subsystems.

tape volume. A tape volume is the recording space on
a single tape cartridge or reel. See also volume.

temporary data set. An uncataloged data set whose
name begins with & or &&, that is normally used only
for the duration of a job or interactive session. Contrast
with permanent data set.

U
unmovable data set. A DASD data set required by an
application, which cannot be moved. Unmovable data
sets need to be identified to the system so that they are
not relocated. They can be identified by allocation the
data set in absolute tracks or by allocating a data set
with the data set organization that includes the
unmovable attribute. For example, data sets allocated
as PSU, POU, DAU, or ABSTR are considered
unmovable.

use attribute. (1) The attribute assigned to a DAD
volume that controls when the volume can be used to
allocate new data sets; use attributes are public, private,
and storage. (2) For system-managed tape volumes,
use attributes are scratch and private.

user group. A group of users in an installation who
represent a single department or function within the
organization.

user group representative. A person within a user
group who is responsible for representing the user
group’s interests in negotiations with the storage
administration group.

V
validate. To check the completeness and consistency
of an individual ACS routine or an entire SMS
configuration.

virtual input/output (VIO) storage group. A type of
storage group that allocates data sets to paging

storage, which simulates a DASD volume. VIO storage
groups do not contain any actual DASD volumes. See
also storage group.

vital records. A data set or volume maintained for
meeting an externally-imposed retention requirement,
such as a legal requirement. Compare with disaster
recovery.

vital record specification. Policies defined to manage
the retention and movement of data sets and volumes
for disaster recovery and vital records purposes.

volume. The storage space on DASD, tape, or optical
devices, which is identified by a volume label. See also
DASD volume, optical volume, tape volume.

volume mount analyzer. A program that helps you
analyze your current tape environment. With tape mount
management, you can identify data sets that can be
redirected to the DASD buffer for management using
SMS facilities.

volume status. In the Storage Management
Subsystem, indicates whether the volume is fully
available for system management:

v “Initial” indicates that the volume is not ready for
system management because it contains data sets
that are ineligible for system management.

v “Converted” indicates that all of the data sets on a
volume have an associated storage class and are
cataloged in an integrated catalog facility catalog.

v “Non-system-managed” indicates that the volume
does not contain any system-managed data sets and
has not been initialized as system-managed.

VSAM volume data set (VVDS). A data set that
describes the characteristics of VSAM and
system-managed data sets residing on a given DASD
volume; part of an integrated catalog facility catalog.
See also basic catalog structure, integrated catalog
facility catalog.

366 z/OS V2R13.0 DFSMSdfp Utilities

Index

Numerics
3800 Printing Subsystem Model 1

FCB module structure 137
GRAPHIC module structure 147
module types 133

3800 Printing Subsystem Model 3
creating graphic character set modules 167
creating library character set modules 167
GRAPHIC module structure 147

4248 FCB module structure 137
4248 printer module 133
4248 printer, creating FCB module 167

A
abbreviations

exceptions 41
key words 41

ABEND codes, IEBCOPY program 326
ACCESS parameter

INITT statement 251
accessibility 355
ADD statement

IEBUPDTE program 220, 225
IEHPROGM program 310

alias name
changing member 299
copying member 26
creating for partitioned member 229

ALIAS statement, IEBUPDTE program 229
allocation/deallocation 305
ALTERMOD statement

IEBCOPY program 30, 41
restrictions 30

anyname DD statement
IEHINITT program 247, 248
IEHLIST program 262
IEHMOVE program 282
IEHPROGM program 304, 305

anyname1 DD statement, IEBCOPY program 36, 39
anyname2 DD statement, IEBCOPY program 36
APF (Authorized Program Facility), invoking utility

program 321
attribute records, IEBCOPY unload data set 335

B
backup

data set 109
example 54
IEBCOPY program 23
ISAM data set 189
member 109
verify with IEBCOMPR program 11

basic direct access method 275
BDAM

macro 276

BDAM (basic direct access method)
copying 275
moving 275
renaming 299
scratching 299

block size
COPYMOD statement 45
unload data set

MAXBLK 24
MAXBLK, MINBLK 40
MINBLK 24

buffer
IEHMOVE program 280
work area 32

building an index with IEHPROGM 299

C
cataloged data set, moving

example 297
CATLG statement, IEHPROGM program 309
CHANGE statement, IEBUPDTE program 220, 225
character arrangement table

3800 modules 133
building example 177, 179
creating 142, 160
deleting graphic reference example 179
listing 144
modifying example 177, 179
structure 143

CHARSET statement
IEBIMAGE program syntax 164, 165
module 149
statement 164, 166

CLOSE macro
totaling routine 346
user label 346

COMPARE statement
IEBCOMPR program 14
syntax 14

comparing, IEBCOMPR program
copying partitioned data set example 19
copying sequential data set example 18
data sets

card input 17
partitioned 11, 18, 19
PDSE 11, 19, 21
sequential 11, 16, 18
tape input 17

different density sequential data sets example 17
partitioned data set example 19
PDSE example 19
sequential data set example 17, 18
tape resident data set example 16

COMPRESS parameter, IEBCOPY program 37
compress-in-place operation

data set 29
processing considerations 29, 30

© Copyright IBM Corp. 1979, 2002 367

control statements 6
converting

H-set BCDIC to EBCDIC 124
load modules to program objects 21
packed decimal to unpacked decimal 124
partitioned data set to PDSE 22, 71
program objects to load modules 21
sequential to partitioned data set or PDSE 109
unpacked decimal to packed decimal 124

COPY DSGROUP statement, IEHMOVE program 285,
286, 287

COPY DSNAME statement, IEHMOVE program 284,
285

COPY PDS statement, IEHMOVE program 283, 287,
288, 289

COPY statement, IEBCOPY program 30, 41, 43
COPY VOLUME statement

IEHMOVE program 290
COPY VOLUME statement, IEHMOVE progra 289
COPYAUTH statement

moving and copying 271
COPYGRP member, replacing 29
COPYGRP statement

IEBCOPY program 41, 44
syntax 44

copying
basic

sequential data set 272
BDAM data set 275
BDAM macro 276
cataloged data sets 277
COPYAUTH statement 271
data set with delimiter example 107
data sets 271, 278
DBCS

example 131
DBCS data

IEBGENER program 113
directory information 23
edited statements example 106
edited steps example 106
examples 104, 109
IEBCOPY program 21

COPY statement 41, 43
COPYGRP statement 41, 44
COPYMOD statement 41, 45
data set 22
load modules 30
members with aliases 26
unload data set 23

IEBUPDTE program example 239
IEHMOVE program 283, 284
ISAM

description 189
example 195

job statement
example 104

job statement example 104, 105, 109
job step example 104, 105, 109
load modules 30

copying (continued)
member

excluding 25
with an alias 26

modification module
creating 141, 157
example, building 175, 177
IEBIMAGE listing 169
overrun notes 169
printing data, specifying 133

multiple jobs example 105
multiple operations examples 57, 66
multivolume 276
optional

sequential data set 272
partitioned data set 272

example 49, 54
IEBCOPY program 21, 71

partitioned data set example 19
partitioned data set extended

IEBCOPY program 75
partitioned data set extended, IEBCOPY

program 72
partitioned data set, IEBCOPY program 22
PDSE

example 49
IEBCOPY program 22

RACF 271
reblocking 270
select members example 52
sequential data set 272

example 106, 109, 128, 129, 131, 132
sequential data set example 18
SMS-managed volume 267
unloaded 276
unloaded data set 23
unmovable 277
unsuccessful space allocated 270
user label 109
volume 278

COPYMOD statement
description 31
example 175
IEBCOPY program 41, 45, 46
IEBIMAGE listing with overrun notes 159
IEBIMAGE program 157, 160
module 141
syntax 45, 158

CREATE parameter, user exit routines 341
CREATE statement 86

D
DATA parameter, user exit routines 341
data set

comparing 11
copying

BDAM 271, 275
cataloged group 277
description 267
IEBCOPY program 21

368 z/OS V2R13.0 DFSMSdfp Utilities

data set (continued)
copying (continued)

IEBGENER program 109
IEHMOVE program 271, 284
multivolume 276
partitioned 271
sequential 272
unloaded 276
unmovable attribute 277
volume 278

creating new master example 234
edited 111
example

scratching 313
uncataloging 313

I/O 101
IEBUPDTE program library 217
library member example, adding records 236
logical record length 112
maintaining a password 300
member

aliases 299
renaming 28
replacing 26

merging 22
moving

BDAM 271, 275
cataloged group 277
description 267
IEHMOVE program 271, 284
multivolume 276
partitioned 271
sequential 272
unloaded 276
unmovable attribute 277
volume 278

new partitioned, create example 239
organization, changing 217
printing 197
punching 197
reblocking 270
renaming example 313
scratching 313
scratching example 313
sequential example, card input 238
space allocation

IEHMOVE program 269
SYS1.IMAGELIB 133
uncataloging 313
uncataloging example 314
unload

copying, IEBCOPY program 23
DCB parameter, IEBCOPY program 23
loading, IEBCOPY program 23

utility programs summary 5
data statements

IEBUPDTE program 227
user-designed characters 163, 166

DATATYPE parameter, SYSIN 7
DATE field in formatted VTOC listing 350

DBCS (double-byte character set)
copying 113
editing 113
example, editing 131
printing 113, 198
printing example 216
punching 198
reblocking 113
SO/SI

characters 113
deleting 124
inserting 124

validating 113
DCB parameter

IEBCOPY program, unloading data se 40
IEBCOPY program, unloading data set 24
OPTCD=W 39
overriding 190

DD JCL statement
IEBCOMPR program 13
IEBCOPY program 38, 40
IEBDG program 79
IEBEDIT program 102
IEBGENER program 116
IEBIMAGE program 152
IEBISAM program 193
IEBPTPCH program 200
IEBUPDTE program 219, 220
IEHINITT program 247, 248
IEHLIST program 262
IEHMOVE program 281, 283
IEHPROGM program 305
IFHSTATR program 320

DDM attributes, copying 22
ddname statement

INITT statement 249
debugging tool, IEBDG utility 75
DELETEP statement, IEHPROGM program

delete password 311
syntax 311

density, comparing sequential data sets example 17
detail statement

IEBUPDTE program 225, 227
restrictions 227

DETAIL statement, IEBUPDTE program 225, 227
determining the IEBCOPY operation

COPY operation 41
load operation

partitioned output data set 41
sequential input data set 41

partitioned data sets
input 41
output 41

unload operation
partitioned input data set 41
sequential output data set 41

device variable xx
DFSMSdss (Data Facility Data Set Services) 279
DFSMSrmm 246
DFSORT (Data Facility Sort) 109

Index 369

diagnosis
CVOL 257

directory block allocation
merging data sets 22

directory list
edited format 257

directory records, IEBCOPY unload data set 335
disability 355
DISP parameter

INITT statement 250
DSD statement, IEBDG program 80

E
EDGINERS program 246
EDIT statement syntax, IEBEDIT program 103
edited data set

creating 111
printing 197
punching 197

editing
DBCS 113
DBCS example 131
sequential data set example 129, 131

END statement, IEBDG program 91
ENDUP statement, IEBUPDTE program 229
entry routines, utility programs 342
EOV (end-of-volume)

CLOSE macro 346
user label 346

ERROR parameter, user exit routines 341
ESV (error statistics by volume) data, IFHSTATR

program
example, printing 320
printing 317
printout 319
sorting 317

EXCLUDE statement
COPY statement

DSGROUP 283
PDS 283

IEBCOPY program 41, 46, 48
IEHMOVE program 291
MOVE statement

DSGROUP 283
PDS 283

exclusive copying, IEBCOPY program 27
EXEC JCL statement

IEBCOPY program 36
IEBEDIT program 102

EXEC statement
IEBGENER program 114, 116
IEBIMAGE program 151
IEBISAM program syntax 193
IEBPTPCH program 199
IEBUPDTE program 218
IEHINITT program 247
IEHLIST program

syntax 262
IEHMOVE program 280

syntax 280

EXEC statement (continued)
IEHPROGM program 304
IFHSTATR program 320

exit routine
identifying 119
IEBCOMPR program 14
IEBDG program 91
IEBPTPCH program 205
IEBUPDTE program 219, 223
nonlabel processing routine 345
return codes 343
RETURN macro 342
totaling 346
utility programs 341

Exit routine, IEBISAM program, programming
interface 191

EXITS statement
IEBCOMPR program syntax 14
IEBGENER program syntax 120
IEBPTPCH program

exit routines 205
syntax 205

F
FCB (forms control buffer)

3800 printer module 133
4248 printer module 133
character arrangement table module

example, building 177, 179
example, deleting graphic reference 179
example, modifying 177, 179

graphic character modification module
example, defining 183
example, printing 180, 183
example, using 183

IEBIMAGE program syntax 154
library character set module

example, building 185, 186
example, building from multiple sources 187
example, listing 185
example, modifying 186

module
3800 FCB module 137, 153
4248 FCB module 137, 153
creating 153
example, building 171, 177
example, replacing 171, 173
IEBIMAGE listing 139
IEBIMAGE program 153
printer information 136
structure 137

printers 135
statement, IEBIMAGE program 153, 157

FD statement, IEBDG program 81, 86
formatting, IFHSTATR program, type 21 records 317
full copy, IEBCOPY program 27
FUNCTION statement

IEBUPDTE program
begin operation 220
example 241

370 z/OS V2R13.0 DFSMSdfp Utilities

FUNCTION statement (continued)
IEBUPDTE program (continued)

syntax 221
restrictions 224

G
GENERATE statement, IEBGENER program 119
graphic character modification module 133

building 177, 185
creating 146, 161
example, building 181, 182
example, printing 180
IEBIMAGE program listing 147
listing 177, 185
modifying character arrangement table 181
multiple sources 182
structure 147
World Trade GRAFMOD 180
World Trade National Use Graphics 180

GRAPHIC module, IEBIMAGE program 146
GRAPHIC statement syntax, IEBIMAGE program 162,

163, 164
guide to utility program functions 1

H
HDNGLST page header parameter syntax 325
hexadecimal output printing example 215

I
IBM TotalStorage Enterprise Automated Tape Library

(3495) 246
ICEGENER program 109
ICF (integrated catalog facility) 314
IEBCOMPR program

COMPARE statement 13
comparing data sets 11
description 11
examples 15, 21
EXEC statement 13
EXITS statement 14
input 12
job control statement 12, 13
LABELS statement 14
output 12
return codes 325
sequential data set example 16
SYSIN DD statement 13
SYSPRINT DD statement 13
SYSUT1 DD statement 13
SYSUT2 DD statement 13
user exit routines 341
utility control statement 13, 15
verifying backup copy 11

IEBCOPY program
ABEND codes 326
altering load modules in place 30
ALTERMOD statement 41, 42
anyname1 DD statement 39

IEBCOPY program (continued)
anyname2 DD statement 39
buffer size 32
compressing data set, processing considerations 29
converting

load modules to program objects 21
partitioned data set to PDSE 22
program objects to load modules 21

COPY statement 41, 43
COPYGRP statement 41, 44
copying

data set 22
DDM attributes 22
directory information 23
load modules 30
members with aliases 26
program objects, COPYGRP 28
unload data sets 23

COPYMOD example 69
COPYMOD statement 41, 45
data set

backing up 23
copying 22
merging 22
unloading 23

description 21
directory information

copying 23
examples 48
EXCLUDE statement 25, 41, 46
excluding members 25
EXEC JCL statement 36
INDD statement 41
input 33
inserting RLD counts 31
invoking from application program

example 322
invoking from application program example 324
job control statement 35, 36
JOB statement 36
load operation 21
load processing 27
loading unload data sets 23
logical record length 24
long names 29
MEMBER parameter 28, 29
merging data set 22
output 33
reblocking load modules 30
renaming selected members 28
replacing data set members 26
restrictions 34
return codes 326
SELECT statement

description 47
renaming members 28
replacing aliases 29
selecting members 25, 41

selecting members to be copied 25
selecting members to be loaded or unloaded 25
selective copy 27

Index 371

IEBCOPY program (continued)
SYSIN DD statement 40
SYSPRINT DD statement 38
SYSUT1 DD statement 39
SYSUT2 DD statement 39
SYSUT3 statement 40
SYSUT4 statement 40
table size 32
unload data set

attribute records 335
DCB parameters 24, 40
directory records 335
format 331
member data records 337
note list records 336
rules and restrictions 332

unloading data set 23
user ABEND codes 326
utility control statement 41
virtual storage 32
work area size 32

IEBDG program
actions 77, 83
anyname1 DD statement 79
anyname2 DD statement 79
CREATE statement 347
defining record fields 75
description 75
DSD statement 80
END statement 91
examples 91, 101
EXEC statement 79
exits 347
FD statement 81
IBM supplied patterns 75
input 78
job control statement 78, 80
modifying record fields 77
output 78
return codes 326
SYSPRINT DD statement 79
user exit routines 341
user-specified patterns 76
utility control statement 80, 91

IEBEDIT program
description 101
examples 104, 109
EXEC JCL statement 102
input 101
job control statement 102
JOB statement 102
output 101
return codes 326
SYSIN DD statement 102
SYSPRINT DD statement 102
SYSUT1 DD statement 102
SYSUT2 DD statement 102
utility control statement 102, 104

IEBGENER program
buffers 115
changing logical record length 112

IEBGENER program (continued)
converting

H-set BCDIC to EBCDIC 124
packed decimal to unpacked decimal 124
unpacked decimal to packed decimal 124

copying, no directory entry processing 109
creating

edited data set 111
partitioned data sets or PDSEs 109

DBCS
data 113
example 131

DD JCL statement 116
deleting SO/SI 124
description 109
examples 125, 132
EXEC statement 114
input 113
inserting SO/SI 124
invoking from application program example 323
job control statement 114, 118
JOB statement 114
output 113
partitioned data set

adding members 110
example 126, 128

PDSE 110
reblocking example 128
region size calculation 115
return codes 327
sequential data set example 128, 131
SYSIN DD statement 114
SYSPRINT DD statement 114, 116
SYSUT1 DD statement 114
SYSUT2 DD statement 114
user exit routines 341
utility control statement 118, 125

EXITS 119
GENERATE statement 118
LABELS statement 120
member 121
RECORD statement 122

IEBIMAGE program
3800 FCB module structure 137
4248 FCB module structure 137
character arrangement table module 142
CHARSET module listing 150
CHARSET module structure

3800 Model 1 and Model 3 150
description 149

CHARSET statement 164, 166
COPYMOD module

structure and listing 141
COPYMOD module structure and listing 141
COPYMOD statement 157, 160
creating

character arrangement table module 142
copying modification module 141
FCB module 136
graphic character modification module 146
library character set module 148

372 z/OS V2R13.0 DFSMSdfp Utilities

IEBIMAGE program (continued)
description 133
examples 169, 189
EXEC statement 151
FCB module listing 139
FCB statement 153, 157
GRAPHIC module

listing 147
structure 146

GRAPHIC statement 161, 164
INCLUDE statement 166
input 151
job control statement 151, 152
JOB statement 151
module

naming conventions 136
structure 135

NAME statement 167
operation groups 152
OPTION statement 167
output 151
printer models supported 133
return codes 327
SYS1.IMAGELIB data set 134
SYSIN DD statement 151
SYSPRINT DD statement 151
SYSUT1 DD statement 151
TABLE module

listing 144
structure 143

TABLE statement 160, 161
utility control statement 152, 169

IEBISAM program
description 189
examples 194, 197
EXEC statement syntax 193
exit routine, programming 191
input 192
ISAM

copying 189
creating from unloaded data set 191
printing logical records 191
unloading 189

job control statement 193, 197
JOB statement 193
output 192
overriding DCB control information 190
record heading buffer 192
return codes 327
SYSPRINT DD statement 193
SYSUT1 DD statement 193
SYSUT2 DD statement 193

IEBPTPCH program
description 197
edited data set 197
examples 209, 217
EXEC statement 199
input 199
job control statement 199, 200
output 199

IEBPTPCH program (continued)
printing

data set 197
DBCS 198
disk 199
partitioned data set 217
partitioned directory 198
select member 197
selected records 198
tape 199

punching
data set 197
DBCS 198
disk 199
partitioned data set 217
partitioned directory 198
select member 197
selected records 198
tape 199

return codes 328
SYSIN DD statement 199
SYSPRINT DD statement 199
SYSUT DD statement 199
SYSUT2 DD statement 199
user exit routines 341
utility control statement

EXITS 205
LABELS 208, 209
MEMBER 205
RECORD 206
TITLE 204
use of 201

IEBUPDTE program
ALIAS statement syntax 229
creating data set

example 234
example, partitioned data set 234

creating master 217
creating with card input

example 238
data statement 227
deleting records

example 234
description 217
detail statement 225, 227
DETAIL statement

restrictions 227
syntax 225

ENDUP statement
syntax 229

example, new partitioned 239
examples 230, 241
EXEC statement 218
FUNCTION statement

description 220
restrictions 224
syntax 221

input 217
job control statement 218, 220
JOB statement 218
LABEL statement syntax 228

Index 373

IEBUPDTE program (continued)
library

adding records 236
creating 217
example 231, 235, 236, 241
insert 235
partitioned 231
renumber 236
SYS1.PROCLIB 231
updating 217

logical record 227
modifying existing data set 217
organization 217
output 217
REPLACE statement example 233
return codes 328
sequential data set example, copying 239
SYSPRINT DD statement 219
SYSUT1 DD statement 219
SYSUT2 DD statement 219
updating data set example, partitioned data set 234
utility control statement

ENDUP 230
LABEL 228
use of 220

IEHATLAS Program 241
IEHINITT program

anyname DD statement 247
description 243
examples 251, 255
EXEC statement 247
input 246
job control statement 247, 248
JOB statement 247
output 246
PARM parameter, EXEC statement 247
return codes 328
standard label for magnetic tape 245
syntax 247
SYSIN DD statement 247
SYSPRINT DD statement 247
utility control statement 249, 251

IEHLIST program
description 257
directory

partitioned data set 257
PDSE 257
unedited (dump) format 258

examples 265, 267
EXEC statement 261, 262
input 261
invoking from application program example 325
job control statement 261, 262
JOB statement 261
listing

edited format 257, 259
formatted VTOC 350
indexed VTOC 259
partitioned data set directory 257, 258
PDSE directory 257, 258
unedited (dump) format 258, 260

IEHLIST program (continued)
listing (continued)

VTOC 259, 260, 261
output 261
partitioned data set 263
return codes 329
sample VTOC listing 349
SYSIN DD statement 262
SYSPRINT DD statement 262
utility control statement 263, 265

LISTPDS statement 263
LISTVTOC statement 263

IEHMOVE program
anyname DD statement 281
buffers 280
copying

BDAM 275
data set 271
group of cataloged data sets 277
multivolume data sets 276
partitioned data set 272
sequential data set 272
unmovable data sets 277
volume 278

description 267, 283
examples 293, 294
EXCLUDE statement 296
EXEC statement 280

syntax 280
input 278
job control statement 279, 283
JOB statement 279
moving

BDAM 275
data set 271
group of cataloged data sets 277
multivolume data sets 276
partitioned data set 272
sequential data set 272
unloaded data set 276
unmovable data sets 277
volume 278

output 278
partitioned data set

example 295
partitioned data set example 294, 295
RACF protection 271
reblocking data set 270
return codes 329
sequential data set example 294, 296, 297
SMS volumes, move or copy 279
space allocation 269
SYSIN DD statement 281
SYSPRINT DD statement 281
SYSUT1 DD statement 281
tape DD statement 282
utility control program

COPY DSGROUP 285, 287
COPY PDS statement 287
MOVE 287
MOVE DSGROUP 285

374 z/OS V2R13.0 DFSMSdfp Utilities

IEHMOVE program (continued)
utility control program (continued)

MOVE DSNAME statement 284
MOVE PDS statement 287

utility control statement
COPY VOLUME 289
EXCLUDE 291
INCLUDE 290, 291
MOVE VOLUME 289
REPLACE 292
SELECT 292
use of 283

volume size compatibility 268
IEHPROGM program

anyname DD statement 304
description 299
examples 312
EXEC statement 304
input 303
job control statement 304, 305
JOB statement 304
output 303
password

adding 302
deleting 303
maintaining 300

password entries, listing 303
renaming

data set 300
member 300

return codes 329
scratching data set or member 299
SYSIN DD statement 304
SYSPRINT DD statement 304
utility control statement

CATLG statement 309
DELETEP 311
LIST 312
RENAME statement 308
SCRATCH statement 306
UNCATLG statement 309
use of 306

IFASMFDP 117
IFASMFDP tape 318
IFHSTATR program

description 317
example 320
EXEC statement 320
I/O 318
job control statement 320
JOB statement 320
sample printed output 318
SYSUT1 DD statement 320
SYSUT2 DD statement example 320
tape quality 317

image
library, IEBIMAGE program 134, 166
printer, IEBIMAGE program 133

INCLUDE statement
COPY statement

DSGROUP 283

INCLUDE statement (continued)
COPY statement (continued)

PDS 283
IEBIMAGE program syntax 166
IEHMOVE program 291
MOVE statement

DSGROUP 283
PDS 283

INDD parameter
COPY statement 43
COPYGRP statement 44
COPYMOD statement 45

INDD statement, IEBCOPY program 41, 46
index, copying

directory entry processing 109
IEBGENER program 109

indexed sequential access method 299
Indexed sequential access method 189
indexed VTOC

listing 259
INHDR/INTLR parameter, user exit routines 341
INITT statement, IEHINITT program 249, 251

ACCESS parameter 251
DISP parameter 249
example 249
LABTYPE parameter 250
NUMBTAPE parameter 250
OWNER parameter 249
SER parameter 249
syntax 249

input stream 17
input, IEHPROGM program 303
INREC/OUTREC parameter, user exit routines 341
INSERT parameter restrictions 226
integrated catalog facility 314
IOERROR parameter, user exit routines 341
ISAM (indexed sequential access method)

copying
description 189
example 195

creating from an unloaded data set 191
loading example 195
printing logical records

description 191
example 196

scratching 299
unloading example 195

ISAM data set rename 300
ISO/ANSI

volume access security 251
ISO/ANSI volume access security 251

J
JCL (job control language), IEBDG program 78
job control statement

controlling utility programs 6
IEBCOMPR program 12, 13
IEBCOPY program 35, 36
IEBEDIT program 102
IEBGENER program 114, 118

Index 375

job control statement (continued)
IEBIMAGE program 151, 152
IEBISAM program 193, 194
IEBPTPCH program 199, 200
IEBUPDTE program 218, 220
IEHINITT program 247, 248
IEHLIST program 261, 262
IEHMOVE program 279, 283
IEHPROGM program 304, 305
IFHSTATR program 320

job step
copying example 107
copying multiple jobs example 105
copying to output data set example 104
edit copying example 106
selective example 105

K
key

creating 109
output record 120

KEY parameter, user exit routines 341
keyboard 355

L
label processing 345
LABELS statement

IEBCOMPR program syntax 15
IEBGENER program syntax 121
IEBPTPCH program syntax 209
IEBUPDTE program 228
processing routines 344

LABTYPE parameter
INITT statement 250

LC parameter, IEBCOPY program 37
library

character set module
building 185, 189
creating 148, 164
description 133
IEBIMAGE listing 150
listing 185, 189
structure 149

IEBUPDTE program
example, creating 232
example, partitioned members 231
partitioned members 217

maintaining 134
printer data 133
tape quality 317
update example 233

library member
creating data set example 234
updating data set example 234

line overrun conditions 157, 168
LINECNT parameter, IEBCOPY program 37
LINK macro 247

parameter lists 325
utility program syntax 321

LIST parameter, IEBCOPY program 37
LIST statement syntax, IEHPROGM program 312
listing

edited load modules 257
IEBIMAGE program, COPYMOD module 141
library character set module example 185
partitioned data set directory 257

entries 263
example 265

password entries 303
PDSE directory 257, 263

example 265
unedited format 258
variables xx
VTOC

edited format 259
entries 263
example 266
IEHLIST program 349
indexed 259
unedited (dump) format 260

LISTPDS statement, IEHLIST program
syntax 263

LISTVTOC statement, IEHLIST program
syntax 264

load module
alter in place 30, 68
ALTERMOD statement 42
block size 45
copying 30
listing, edited 257
reblocking

example 69, 70
IEBCOPY program 30

replacing example 69
load modules

converting to program objects 21
load processing, IEBCOPY program 27
loading

ISAM example 195
labeled 7-track tape example 297
merging example 67
partitioned from sequential data set example 66
re-creating a partitioned data set 21
sequential data set example 297

loading library
distributing example 70
reblocking example 70

loading processing, IEBCOPY program 27
logical record

IEBCOPY program, length 24
IEBUPDTE program, data statement 227
ISAM, printing 191
length, change 112

LPP parameter, IEBCOPY program 37

M
macro

BDAM 276
CLOSE macro 346

376 z/OS V2R13.0 DFSMSdfp Utilities

macro (continued)
LINK 247, 321
LOAD 192
OPEN macro 346
RETURN 342
SETPRT 136, 152

macro libraries 217
MAXBLK parameter, IEBCOPY program 45
member data records, IEBCOPY unload data set 337
MEMBER parameter, IEBCOPY program

EXCLUDE statement 46
renaming member 28
SELECT statement 47

MEMBER statement
IEBGENER program

description 121
syntax 122

IEBPTPCH program
description 205
syntax 206

merging
COPY statement 287
copying example 67
loading example 67
MOVE statement 287
partitioned data set example 50, 55
partitioned data set, IEBCOPY program 21
sequential data set, partitioned data sets 127

merging data sets, directory block allocation 22
MINBLK parameter, IEBCOPY program 46
module

alias name 135
alter in place 30, 68
copying 30
naming conventions for IEBIMAGE 136
reblocking 30
structure 135

MOVE DSGROUP statement, IEHMOVE program 285,
286, 287

MOVE DSNAME statement, IEHMOVE program 284,
285

MOVE PDS statement, IEHMOVE program 288, 289
MOVE VOLUME statement, IEHMOVE program 289,

290
moving

basic
sequential data set 272

BDAM macro 276
cataloged data set example 297
data set

BDAM 275
cataloged data sets 277
COPYAUTH (copy authorization) 271
IEHMOVE program 284
multivolume 276
partitioned data set 272
RACF 271
reblocking 270
unloaded 276
unmovable 277

disk volume to separate volume example 294

moving (continued)
IEHMOVE program example 293, 296
merging example 294
optional

sequential data set 272
sequential data set 272
unsuccessful

space allocated 270
volume 278
volume of data sets example 295, 297

multiple copy operation examples 57, 66
multitasking environment 305
multivolume data set

copying 276
moving 276

N
NAME statement syntax, IEBIMAGE program 167
naming

modules created by IEBIMAGE 136
new image library module 167

nonlabel processing routine 345
notational conventions, utility programs xix
note list records, IEBCOPY unload data set 336
NUMBER statement, IEBUPDTE program 225, 228
NUMBTAPE parameter

INITT statement 250

O
OPEN macro

CLOSE macro 346
user label 346

operation groups, IEBIMAGE program 152
OPTCD=W 39
OPTION statement, IEBIMAGE program

library character set modules 167
syntax 168

OUTHDR/OUTLR parameter, user exit routines 341
output records, generating with IEBDG 93, 96
output, IEHPROGM program 303

P
page header parameter, HDNGLST syntax 325
page margins, specifying for 3800 and 4248

printers 155
parameter list, building 322
parameters

label processing 344
nonlabel processing 345

PARM parameter (EXEC statement)
IEBGENER program 114
IEHINITT program 247

partitioned data set
back up 23
block size when copied 45
comparing

example 19, 21
comparing example 18

Index 377

partitioned data set (continued)
compressing

processing considerations 29
converting

to PDSE 71
to sequential 217

converting to 22
copying 272

example 19, 49
excluding members 25
IEBCOPY program 21, 22
members with alias names 26
selecting members 25

copying multiple operations
example 66

copying multiple operations example 57
copying selected members

example 54
copying selected members example 50, 52
creating data set library 217
creating from sequential input

example 126, 128
utility control statements 109

creating master 217
directory

comparing data sets 11
copying information 23
example 214
listing 257
printing 198, 263
punching 198
unedited (dump) format 258

listing directory 263
example 265

listing members 263
loading

example 66
unload data sets 23

member
adding 94, 110
loading 25
renaming 28, 300
replacing 26
unloading 25

merging
example 55
IEBCOPY program 21
sequential data set 127

modifying 217
moving 272
printing a directory

example 265
printing example

data set 197
DBCS 217
directory 214
selected member 197, 210

punching 197
renaming members example 315
replacing select members example 52
scratching 299

partitioned data set (continued)
selected records, printed example 215
source language modifications 217
unload format, IEBCOPY 331
unloading 23
unused areas (gas) 29
updating data set library 217

partitioned output 121
password

adding 302
deleting 303
example

defining 314
listing 315

listing entries 303
maintaining 300
replacing

example 315
for data set 303

patterns of test data
IBM supplied 75
specifying type 82
user-specified

example 98
format 76

PDSE (partitioned data set extended)
backing up 23
comparing 11, 19
converting

from partitioned data set example 71
to partitioned data set 22
to sequential 217

copying 22
creating

library of partitioned members 217
sequential input 109

directory
edited list 257
listing 257, 258, 263
printing 198
punching 198
unedited (dump) format 258

directory information
copying 23

directory printing
example 265

loading 23
member

adding 110
copying 25
copying with alias names 26
excluding from copy 25
renaming 28
replacing 26, 28

modifying 217
printing 197
program objects

replace 72
to PDSE 71

punching 197
source language modifications 217

378 z/OS V2R13.0 DFSMSdfp Utilities

PDSE (partitioned data set extended) (continued)
unload format, IEBCOPY 331
unloading 23
updating 217

PRECOMP parameter, user exit routines 341
PRINT statement, IEBPTPCH program 201, 204
printer

3800 FCB module structure, Model 1 137
4248 FCB module structure 137
FCB 135

printer channel codes
conventions for channels 1, 9 and 12 155
FCB module 136
specifying in FCB statement 155

printing
data set 197
DBCS

example 216
IEBGENER program 113

disk 199
edited data set 197
hexadecimal output example 215
IEBIMAGE program 133
IFHSTATR program

example 320
type 21 records 317

ISAM
discussed 191
example 196

members of data set 197
partitioned data set

data set 197
directory 198, 257, 263
example 214, 215, 217, 265
example, printing member 210
select member 197

PDSE
directory 198, 257, 263
example, directory 265
select member 197

record group example 212
selected records

example 215
IEBPTPCH program 198

sequential data set
data set 197
example 126, 211, 212, 213, 215
select member 197

tape 199
titles 204
type 21 SMF records example 320

processing considerations for compress 30
processing routine

label parameters 344
nonlabel parameters 345

program objects
alias names 28
converting to load modules 21
member 28

protection
data set

adding passwords 302, 314
deleting passwords 303
example 314
replacing passwords 303

listing passwords example 315
maintaining a password 300
password, listing entries of data set 303
RACF 271
replacing passwords example 315

PUNCH statement, IEBPTPCH program 201, 204
punching

data set
partitioned 197
PDSE 197
sequential 197

DBCS 198
disk 199
edited data set 197
partitioned data set 197
partitioned data set directory 198
PDSE 197
PDSE directory 198
selected records 198
sequential data set

example 210
IEBPTPCH program 197

tape 199

R
RACF (Resource Access Control Facility)

IEHMOVE program 271
reblocking

data set 270
DBCS 113
example 128
load modules 30

recommendations
DFSORT and ICEGENER 109
PDSU block size 24
SuperC utility 11

record
fields

altering contents with IEBDG 83
changing the contents with IEBDG 77
defining contents with IEBDG 75, 81, 86
rippling contents of 93

group
defining 122, 206
dividing sequential data sets 109
fields 207

record formats, IEBCOPY unload data set 331
record group, printing example 212
RECORD statement

IEBGENER program 122, 125
IEBPTPCH program

defining record group 206
syntax 207, 208

referencing aids, special 8

Index 379

RENAME parameter
MOVE/COPY to SMS volume 267

RENAME statement
IEHPROGM program 309

RENAME statement, IEHPROGM program 308
renaming

data set 299
multivolume data set example 313
partitioned data set example 315

REPEAT statement, IEBDG program 86
REPL statement, IEBUPDTE program 225
REPLACE option, using 28
REPLACE parameter, IEBCOPY program 37
REPLACE statement

IEBUPDTE program 220
IEBUPDTE program, example 233
IEHMOVE program 292
IEHPROGM program 310
subordinate control statements 283

replacement level
data set 27
member 27

replacing
data set members 26
select members example 52

REPRO statement, IEBUPDTE program 220, 225
restrictions

COPYGRP statement
EXCLUDE statement 25
Multiple INDD statements 44

detail statement, IEBUPDTE program 227
FUNCTION statement, IEBUPDTE program 224
IEBCOPY program 34
IEBGENER, directory entry processing 109
IEBIMAGE, UCS images 133
INSERT parameter, IEBUPDTE program 226
output records, generating with IEBDG 96
unload data set, IEBCOPY 332
UPDATE parameter, IEBUPDTE program 224
utility programs 8

return codes
IEBDG user exit routine 347
IEBIMAGE program 327
IEBISAM program 327
IEBISAM user exit routine 192
IEBPTPCH program 328
IEBUPDTE program 328
IEHINITT program 328
IEHLIST program 329
IEHMOVE program 329
IEHPROGM program 329
totaling routine 346
user exit routine 343
utility programs 325, 326, 327, 329

RETURN macro
format 342

RETURN macro, exit routine 342
RLD (relocation dictionary), inserting counts 31

S
SCRATCH statement

IEHPROGM program 306, 308
SCRATCH statement, IEHPROGM program 306
scratching data set 299

example 313
IEHPROGM program 299

SDB (storage descriptor block) xxiii, 114, 117
SELECT statement

COPY statement, DSGROUP 283
IEBCOPY program 41, 47, 48
IEHMOVE program 292
MOVE statement, DSGROUP 283
renaming members 28
replacing members 29

selecting members
for loading 25
for unloading 25
to be copied 25

sequential data set
comparing

density example 17
example 16, 18
IEBCOMPR program 11

converting 217
copying 272

example 18, 128, 129, 131, 132
creating master 217
creating partitioned, example 126
editing example 129, 131, 132
example

comparing 18
copying 18

fields 92
IEHMOVE program 272
merging, partitioned data set 127
modifying 217
moving 272
printing

example 126, 213, 215
IEBPTPCH program 197

punching
example 210, 211
IEBPTPCH program 197

reblocking 128
renaming 300
scratching 299
source language modifications 217
user specifications, example 212

SER parameter
INITT statement 249

SETPRT macro 136, 152
shortcut keys 355
SIO usage count 319
SIZE parameter, IEBCOPY program 37
SMF (System Management Facilities), format of type 21

records 317
SMS (Storage Management Subsystem)

indexed VTOC list 260
moving 267
preallocate data set 267

380 z/OS V2R13.0 DFSMSdfp Utilities

SMS (Storage Management Subsystem) (continued)
scratching 299

SMS.IND field in formatted VTOC listing 352
space allocation

IEHMOVE program 269
SPCLCMOD 38
standard label

magnetic tape volumes 245
Storage descriptor block (SDB) xxiii, 114, 117
Storage Management Subsystem 299
syntax 21

HDNGLST parameter 325
IEBCOMPR program

COMPARE statement 14
EXITS statement 14
LABELS statement 15

IEBCOPY program
ALTERMOD statement 42
COPY statement 43
COPYGRP statement 44
COPYMOD statement 45
EXCLUDE statement 46
SELECT statement 47

IEBEDIT program, EDIT statement 103
IEBGENER program

EXITS statement 120
GENERATE statement 119
LABELS statement 121
MEMBER statement 122
RECORD statement 122

IEBIMAGE program
CHARSET statement 164, 165
COPYMOD statement 158
FCB statement 154
GRAPHIC statement 162, 163
INCLUDE statement 166
NAME statement 167
OPTION statement 168
TABLE statement 160

IEBPTPCH program
EXITS statement 205
LABELS statement 209
MEMBER statement 206
PRINT statement 201
PUNCH statement 201
RECORD statement 207
TITLE statement 204

IEBUPDTE program
ALIAS statement 229
DETAIL statement 225
ENDUP statement 229
FUNCTION statement 221
LABEL statement 228

IEHINITT program 249
IEHLIST program

LISTPDS statement 263
LISTVTOC statement 264

IEHMOVE program
COPY DSGROUP statement 286
COPY DSNAME statement 284
COPY PDS statement 288

syntax (continued)
IEHMOVE program (continued)

COPY VOLUME statement 289
INCLUDE statement 291
MOVE DSGROUP statement 286
MOVE DSNAME statement 284
MOVE PDS statement 288
MOVE VOLUME statement 289
REPLACE statement 292
SELECT statement 292

IEHPROGM program
ADD statement 310
CATLG statement 309
DELETEP statement 311
EXEC statement 304
LIST statement 312
RENAME statement 308
REPLACE statement 310
SCRATCH statement 306
UNCATLG statement 309

page header parameter, HDNGLST 325
utility program, LINK macro 321

SYS1.IMAGELIB data set
maintaining 134
storage requirements 133

SYS1.MAN tape 318
SYS1.MANX data set 318
SYS1.MANY data set 318
SYS1.PROCLIB example 231
SYS1.VTOCIX data set 264
SYSIN DD statement

IEBCOMPR program 13
IEBCOPY program 36, 40
IEBEDIT program 102, 262
IEBGENER program 114, 118
IEBIMAGE program 151, 152
IEBPTPCH program 200
IEBUPDTE program 220
IEHINITT program 247, 248
IEHLIST program 262
IEHMOVE program 283
IEHPROGM program 304, 305

SYSOUT data set example, printing 213
SYSPRINT DD statement

IEBCOMPR program 13
IEBCOPY program 36, 38
IEBEDIT program 102
IEBGENER program 114, 116
IEBIMAGE program 151, 152
IEBISAM program 193
IEBPTPCH program 199, 200
IEBUPDTE program 219
IEHINITT program 247
IEHLIST program 262
IEHMOVE program 281
IEHPROGM program 304, 305

SYSPRINT DD Statement
IEHINITT program 247

system utility programs 5
system–determined block size 114
SYSUT DD program, IEBPTPCH program 199

Index 381

SYSUT1 DD statement
IEBCOMPR program 13
IEBCOPY program 36, 39
IEBEDIT program 102
IEBGENER program 114, 116
IEBIMAGE program 151, 152
IEBISAM program 193
IEBPTPCH program 200
IEBUPDTE program 219
IEHMOVE program 281
IFHSTATR program 320

SYSUT2 DD statement
IEBCOMPR program 13
IEBCOPY program 36
IEBEDIT program 102
IEBGENER program 114
IEBISAM program 193
IEBPTPCH program 199, 200
IEBUPDTE program 219
IFHSTATR example 320

SYSUT3 DD statement, IEBCOPY program 36, 40
SYSUT4 DD statement, IEBCOPY program 36, 40

T
TABLE

module listing, IEBIMAGE program 144
module structure, IEBIMAGE program 143
statement

description 160
syntax 160, 161

tape
input, comparing data sets 17
library condition 317

tape DD statement
IEHMOVE program 282

tape labels
creating 255
example 251, 252
IEHINITT program

volume 243
tape-resident data sets, comparing, 7-track tape

example 16
TIOT 305
TITLE statement, IEBPTPCH program

description 204
syntax 204

TOTAL parameter, user exit routines 341
totaling routine, return codes 346
translation table, module structure 143

U
uncataloging data set example 313
UNCATLG statement (IEHPROGM) 309
UNCATLG statement, IEHPROGM program 309
unload data set, IEBCOPY program

attribute records 335
copying 23
DCB parameter 23
directory records 335

unload data set, IEBCOPY program (continued)
formats

invalid 332
new 332
old (pre-PDSE) 332
partitioned data set 331
transfer 332

loading 23
member data records 337
note list records 336
record formats 331
rules and restrictions 332

unloading
copying 276
creating sequential data sets 21
disk volume example 297
excluding members

example 54
excluding members example 67
ISAM example 195
moving 276
partitioned data set 23, 331
PDSE 23
reorganizing 267
selecting members example 67
unlabeled tape volume example 296

unloading and compressing partitioned data set or
PDSE, example 54

unmovable data sets
copying 277
moving 277

UPDATE parameter restrictions 224
User ABEND codes 326
user exit routine, returning to utility program 342
user label

modifying physical record 121
processing

data 347
data set descriptors 345

processing with IEBGENER 120
system action 346
treated as data 209

user-specified
example 98
patterns of test data 76, 83, 90, 98

utility control statement
ADD 220, 225, 309
CATLG 309
CHANGE 220, 225
coding 7, 8
continuing 8
COPY DSGROUP 285, 287
COPY DSNAME 284, 285
COPY PDS statement 287, 289
COPY VOLUME 289, 290
CREATE 86, 91
DELETE 225, 228
DELETEP 311
description 7
DSD 80
EDIT 102, 104

382 z/OS V2R13.0 DFSMSdfp Utilities

utility control statement (continued)
END 91
ENDUP 229
EXCLUDE 291
EXITS 14, 119, 205
FD 81, 86
fields 7
format 7
GENERATE 118
IEBCOMPR program 13, 15
IEBCOPY program 41
IEBIMAGE program 152
IEBPTPCH program 201, 209
IEBUPDTE program 229
IEHINITT program 246
IEHLIST program 263, 265
IEHPROGM program 306, 312
INCLUDE 290
INITT 249, 251
LABEL 228
LABELS 120, 208
LIST 312
LISTVTOC 263
MEMBER 121, 205
MOVE DSGROUP 285, 287
MOVE DSNAME 284, 285
MOVE PDS statement 287, 289
MOVE VOLUME 289, 290
NUMBER 225, 227, 228
PRINT 201, 204
PUNCH 201, 204
RECORD 122, 125, 206, 208
RENAME 308, 309
REPEAT 86
REPL 220, 225
REPLACE 292, 309
REPRO 220, 225
SCRATCH 306, 308
SELECT 292
TITLE 204
UNCATLG 309

utility programs
data set 5
description 1
exit routine

overview 341
programming considerations 342
register contents 342
return codes 343, 346
returning 342
totaling 346

functions 1, 11
invoking from application program 321
notational conventions xix
restrictions 8
RETURN macro

exit routine 342
sharing data sets 6
system 1

V
variable-spanned records

BDAM data sets
copying 275
moving 275

VERSION parameter
INITT statement 250

vertical line spacing 136
virtual storage requirement

graphic character modification module 134
library character set 134

volume
table of contents 259

volume data set copy 278
volume data set move 278
volume label initializing 249
volume label set 243
volume size compatibility

IEHMOVE program 268
VTOC (volume table of contents)

formatted listing produced by IEHLIST 350
IEHLIST program output 349
listing

edited format 259
entries 263
example 266
IEHLIST program 259, 261
indexed 259
unedited (dump) format 260

W
WORK parameter, IEBCOPY program 38

Index 383

384 z/OS V2R13.0 DFSMSdfp Utilities

Readers’ Comments — We’d Like to Hear from You

z/OS
DFSMSdfp Utilities

Publication No. SC26-7414-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC26-7414-02

SC26-7414-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
RCF Processing Department
M86/050
5600 Cottle Road
San Jose, CA U.S.A. 95193-0001

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5647-A01

Printed in U.S.A.

SC26-7414-02

	Contents
	Figures
	Tables
	About This Book
	Required Product Knowledge
	Referenced Documents
	Accessing z/OS DFSMS Documents on the Internet
	Using LookAt to look up message explanations
	Accessing Licensed Documents on the Web
	How to Send Your Comments
	Notational Conventions

	Summary of Changes
	Summary of Changes for SC26-7414-02 z/OS Version 1 Release 3
	New Information
	Changed Information

	Summary of Changes for SC26-7414-01 z/OS Version 1 Release 3
	New Information
	Changed Information

	Chapter 1. Introduction
	Guide to Utility Program Functions
	System Utility Programs
	Data Set Utility Programs
	Control
	Job Control Statements
	Sharing Data Sets

	Utility Control Statements
	Continuing Utility Control Statements
	Restrictions

	Special Referencing Aids

	Chapter 2. IEBCOMPR (Compare Data Sets) Program
	Input and Output
	Control
	Job Control Statements
	Utility Control Statements
	COMPARE Statement
	EXITS Statement
	LABELS Statement

	IEBCOMPR Examples
	Example 1: Compare Data Sets that Reside on Tape
	Example 2: Compare Sequential Data Sets that Reside on Tape
	Example 3: Compare Sequential Data Sets Written at Different Densities
	Example 4: Compare Sequential Data Sets—Input Stream and Tape Input
	Example 5: Copy and Compare Sequential Data Set in Two Job Steps
	Example 6: Compare Two Partitioned Data Sets
	Example 7: Copy and Compare Partitioned Data Set in Two Job Steps
	Example 8: Compare Two PDSEs

	Chapter 3. IEBCOPY (Library Copy) Program
	Converting Load Modules to Program Objects or the Reverse
	Converting Partitioned Data Sets to PDSEs
	Copying Data Sets
	Merging Data Sets
	Increasing Directory Space for a Partitioned Data Set

	Unloading (Backing up) Data Sets
	Copying Directory Information between a Partitioned Data Set and a PDSE

	Loading or Copying Unload Data Sets
	IEBCOPY Unload Data Set DCB Parameters

	Selecting Members to be Copied, Unloaded, or Loaded
	Excluding Members from a Copy Operation
	Copying Members That Have Alias Names (COPY Statement)
	Replacing Members in a Data Set
	Renaming Selected Members

	Copying Program Objects (COPYGRP Statement)
	Replacing Program Objects

	Compressing a Partitioned Data Set
	Processing Considerations for Compress

	Altering Load Modules
	Copying and Reblocking Load Modules
	Changed COPYMOD operation

	How IEBCOPY Uses Virtual Storage for Tables and Buffers
	How IEBCOPY Allocates Tables and Buffers

	Avoiding the Need to Supply Control Statements

	Input and Output
	Return Codes

	Restrictions
	Control
	Job Control Statements
	EXEC Statement
	SYSPRINT DD Statement
	SYSUT1 (anyname1) and SYSUT2 (anyname2) DD Statements
	SYSUT3 and SYSUT4 DD statements
	SYSIN DD Statement

	Utility Control Statements
	Abbreviations
	Continuation
	Comments

	Determining the IEBCOPY Operation to Be Performed
	Scope of Operation
	ALTERMOD Statement
	COPY Statement
	COPYGRP Statement
	COPYMOD Statement
	INDD=Statement
	EXCLUDE Statement
	SELECT Statement

	IEBCOPY Examples
	Example 1: Copy an Entire Data Set
	Example 2: Merge Four Data Sets
	Example 3: Copy and Replace Selected Members of a Data Set
	Example 4: Unload and Compress a Data Set
	Example 5: Merge Data Sets and Compress the Merged Data Set
	Example 6: Multiple Copy Operations with One Output Data Set
	Example 7: Multiple Copy Operations with Different Output Data Sets
	Example 8: Loading a Data Set
	Example 9: Unload Selected Members, Load, Copy and Merge
	Example 10: Alter Load Modules in Place
	Example 11: Replace a Load Module Using COPYMOD
	Example 12: Reblock Load Library and Distribute It to Different Device Types
	Example 13: Convert a Partitioned Data Set to a PDSE
	Example 14: Copy Groups from a PDSE to a PDSE
	Example 15: Copy Groups from a PDSE to a PDSE with Replace
	Example 16: Copy a Selected Group from a PDSE to a PDSE

	Chapter 4. IEBDG (Test Data Generator) Program
	Selecting a Pattern
	IBM-Supplied Patterns
	User-Specified Patterns

	Modifying Fields in a Record
	Input and Output
	Control
	Job Control Statements
	EXEC Statement
	SYSPRINT DD Statement
	anyname1 DD Statement
	anyname2 DD Statement
	SYSIN DD Statement

	Utility Control Statements
	DSD Statement
	FD Statement
	REPEAT Statement
	CREATE Statement
	END Statement

	IEBDG Examples
	Example 1: Place Binary Zeros in Records Copied from Sequential Data Set
	Example 2: Ripple 10-byte Alphabetic Pattern
	Example 3: Create Output Records from Utility Control Statements
	Example 4: Use Members and Input Records as Basis of Output Member
	Example 5: Create Records in Three Output Data Sets and Write them to Three Partitioned Data Set Members
	Example 6: Construct Records with Your Own Patterns

	Chapter 5. IEBEDIT (Edit Job Stream) Program
	Input and Output
	Control
	Job Control Statements
	SYSPRINT DD Statement
	SYSUT1, SYSUT2, and SYSIN DD Statements

	Utility Control Statement

	IEBEDIT Examples
	Example 1: Copy One Job
	Example 2: Copy Steps from Three Jobs
	Example 3: Include Step from One Job, Exclude Step from Another
	Example 4: Copy Statement for JOBA and JOB STEPF
	Example 5: Copy Entire Input Data Set
	Example 6: Copy Entire Data Set to Include New Delimiter

	Chapter 6. IEBGENER (Sequential Copy/Generate Data Set) Program
	Creating a Backup Copy
	Producing a Partitioned Data Set or PDSE from Sequential Input
	Adding Members to a Partitioned Data Set or PDSE
	Producing an Edited Data Set
	Changing Logical Record Length
	Using IEBGENER with Double-Byte Character Set Data
	Input and Output
	Control
	Job Control Statements
	EXEC Statement
	SYSPRINT DD Statement
	SYSUT1 DD Statement
	SYSUT2 DD Statement
	SYSIN DD Statement

	Utility Control Statements
	GENERATE Statement
	EXITS Statement
	LABELS Statement
	MEMBER Statement
	RECORD Statement

	IEBGENER Examples
	Example 1: Print a Sequential Data Set
	Example 2: Create a Partitioned Data Set from Sequential Input
	Example 3: Convert Sequential Input into Partitioned Members
	Example 4: In-stream Input, Sequential Data Set to Tape Volume
	Example 5: Produce Blocked Copy on Tape from Unblocked Disk File
	Example 6: Edit and Copy a Sequential Input Data Set with Labels
	Example 7: Edit and Copy a Sequential USS File to a Sequential Data Set
	Example 8: Edit Double-Byte Character Set Data

	Chapter 7. IEBIMAGE (Create Printer Image) Program
	Storage Requirements for SYS1.IMAGELIB Data Set
	Maintaining the SYS1.IMAGELIB Data Set
	General Module Structure
	Naming Conventions for Modules

	Using IEBIMAGE
	Creating a Forms Control Buffer Module
	3800 FCB Module Structure
	4248 FCB Module Structure
	FCB Module Listing

	Creating a Copy Modification Module
	COPYMOD Module Structure
	COPYMOD Module Listing

	Creating a Character Arrangement Table Module
	TABLE Module Structure
	TABLE Module Listing

	Creating a Graphic Character Modification Module
	GRAPHIC Module Structure
	GRAPHIC Module Listing

	Creating a Library Character Set Module
	CHARSET Module Structure
	CHARSET Module Listing

	Input and Output
	Control
	Job Control Statements
	SYSPRINT DD Statement
	SYSUT1 DD Statement
	SYSIN DD Statement

	Utility Control Statements
	Operation Groups

	FCB Statement
	COPYMOD Statement
	TABLE Statement
	GRAPHIC Statement
	CHARSET Statement
	INCLUDE Statement
	NAME Statement
	OPTION Statement
	Using OVERRUN

	IEBIMAGE Examples
	Example 1: Build a New 3800 Forms Control Buffer Module
	3800 Model 1

	Example 2: Replace a 3800 Forms Control Buffer Module
	3800 Model 1

	Example 3: Replace a 3800 Forms Control Buffer Module
	3800 Model 1

	Example 4: Build a New 3800 Forms Control Buffer Module
	3800 Model 1

	Example 5: Replace the 3800 Forms Control Buffer Module STD3
	3800 Model 1

	Example 6: Build a New 3800 Forms Control Buffer Module for Additional ISO Paper Sizes
	3800 Model 3

	Example 7: Build a 4248 Forms Control Buffer Module
	Example 8: Build a New Copy Modification Module
	3800 Model 1

	Example 9: Build a New Copy Modification Module from an Existing Copy
	3800 Model 3

	Example 10: Add a New Character to a Character Arrangement Table Module
	3800 Model 3

	Example 11: Build a New Character Arrangement Table Module from an Existing Copy
	3800 Model 3

	Example 12: Build Graphic Characters in a Character Arrangement Table Module
	3800 Model 1

	Example 13: Delete Graphic References From a Character Arrangement Table Module
	3800 Model 3

	Example 14: List the World Trade National Use Graphics Graphic Character Modification Module
	3800 Model 1

	Example 15: Build a Graphic Character Modification Module from the Character Modification Module World Trade GRAFMOD
	3800 Model 3

	Example 16: Build a New Graphic Character Modification Module and Modify a Character Arrangement Table to Use It
	3800 Model 3

	Example 17: Build a Graphic Character Modification Module from Multiple Sources
	3800 Model 1

	Example 18: Define and Use a Character in a Graphic Character Modification Module
	3800 Model 3

	Example 19: List a Library Character Set Module
	3800 Model 1

	Example 20: Build a Library Character Set Module
	3800 Model 3

	Example 21: Build a Library Character Set Module and Modify a Character Arrangement Table to Use It
	3800 Model 3

	Example 22: Build a Library Character Set Module from Multiple Sources
	3800 Model 1

	Chapter 8. IEBISAM Program
	Copying an ISAM Data Set
	Creating a Sequential Backup Copy
	Overriding DCB Control Information
	Creating an ISAM Data Set from an Unloaded Data Set
	Printing the Logical Records of an ISAM Data Set
	Using IEBISAM User Exits

	Input and Output
	Control
	EXEC Statement

	IEBISAM Examples
	Example 1: Copy Data Set from Two Volumes
	Example 2: Unload an ISAM Data Set
	Example 3: Load an Unloaded ISAM Data Set
	Example 4: Print an ISAM Data Set

	Chapter 9. IEBPTPCH (Print-Punch) Program
	Printing or Punching an Entire Data Set or Selected Member
	Printing or Punching an Edited Data Set
	Printing or Punching Double-Byte Character Set Data
	Printing or Punching Selected Records
	Printing or Punching a Partitioned Directory
	Printing or Punching to Disk or Tape
	Input and Output
	Control
	Job Control Statements
	SYSPRINT DD Statement
	SYSUT1 DD Statement
	SYSUT2 DD Statement
	SYSIN DD Statement

	Utility Control Statements
	PRINT and PUNCH Statements
	TITLE Statement
	EXITS Statement
	MEMBER Statement
	RECORD Statement
	LABELS Statement

	IEBPTPCH Examples
	Example 1: Print Partitioned Data Set
	Example 2: Punch Sequential Data Sets
	Example 3: Duplicate a Card Deck
	Example 4: Print Sequential Data Set According to Default Format
	Example 5: Print Sequential Data Set According to User Specifications
	Example 6: Print Three Record Groups
	Example 7: Print a Pre-Formatted Data Set
	Example 8: Print Directory of a Partitioned Data Set
	Example 9: Print Selected Records of a Partitioned Data Set
	Example 10: Convert to Hexadecimal and Print Partitioned Data
	Example 11: Print Member Containing DBCS Data

	Chapter 10. IEBUPDTE (Update Data Set) Program
	Creating and Updating Data Set Libraries
	Modifying an Existing Data Set
	Changing Data Set Organization
	Input and Output
	Control
	Job Control Statements
	EXEC Statement
	SYSPRINT DD Statement
	SYSUT1 and SYSUT2 DD Statements
	SYSIN DD Statement

	Utility Control Statements
	Function Statement
	Function Restrictions
	Detail Statement
	Detail Restrictions
	Data Statement
	LABEL Statement
	ALIAS Statement
	ENDUP Statement

	IEBUPDTE Examples
	Example 1: Place Two Procedures in SYS1.PROCLIB
	Example 2: Create a Three-Member Library
	Example 3: Create New Library Using SYS1.MACLIB as a Source
	Example 4: Update a Library Member
	Example 5: Create New Master Data Set and Delete Selected Records
	Example 6: Create and Update a Library Member
	Example 7: Insert Records into a Library Member
	Example 8: Renumber and Insert Records into a Library Member
	Example 9: Create a Sequential Data Set from Card Input
	Example 10: Copy Sequential Data Set from One Volume to Another
	Example 11: Create a New Partitioned Data Set

	Chapter 11. IEHATLAS Program
	Chapter 12. IEHINITT (Initialize Tape) Program
	Placing a Standard Label Set on Magnetic Tape
	Using DFSMSrmm
	Input and Output
	Control
	Job Control Statements
	EXEC Statement
	SYSPRINT DD Statement
	anyname DD Statement
	Tape Library Dataserver Considerations
	SYSIN DD Statement

	Utility Control Statement

	IEHINITT Examples
	Example 1: Write EBCDIC Labels on Three Tapes
	Example 2: Write an ISO/ANSI Label on a Tape
	Example 3: Place Two Groups of Serial Numbers on Six Tape Volumes
	Example 4: Place Serial Number on Eight Tape Volumes
	Example 5: Write EBCDIC Labels in Different Densities
	Example 6: Write Serial Numbers on Tape Volumes at Two Densities
	Example 7: Write an ISO/ANSI Label with an Access Code
	Example 8: Write on a tape following labeling without demounting and remounting

	Chapter 13. IEHLIST (List System Data) Program
	Listing a Partitioned Data Set or PDSE Directory
	Edited Format
	Unedited (Dump) Format

	Listing a Volume Table of Contents
	Edited Format
	First Edited Format
	Second Edited Format
	Unedited (Dump) Format

	Input and Output
	Control
	Job Control Statements
	EXEC Statement
	SYSPRINT DD Statement
	anyname DD Statement
	SYSIN DD Statement

	Utility Control Statements
	LISTPDS Statement
	LISTVTOC Statement

	IEHLIST Examples
	Example 1: List Partitioned Directories Using DUMP and FORMAT
	Example 2: List Non-indexed Volume Table of Contents

	Chapter 14. IEHMOVE (Move System Data) Program
	Considering Volume Size Compatibility
	Allocating Space for a Moved or Copied Data Set
	Reblocking Data Sets
	Using IEHMOVE with RACF®

	Moving or Copying a Data Set
	Sequential Data Sets
	Partitioned Data Sets
	BDAM Data Sets
	Multivolume Data Sets
	Unloaded Data Sets
	Unmovable Data Sets

	Moving or Copying a Group of Cataloged Data Sets
	Moving or Copying a Volume of Data Sets
	Input and Output
	Control
	Job Control Statements
	EXEC Statement
	SYSPRINT DD Statement
	SYSUT1 DD Statement
	anyname DD Statement
	tape DD Statement
	SYSIN DD Statement

	Utility Control Statements
	MOVE DSNAME and COPY DSNAME Statements
	MOVE DSGROUP and COPY DSGROUP Statements
	MOVE PDS and COPY PDS Statements
	MOVE VOLUME and COPY VOLUME Statements
	INCLUDE Statement
	EXCLUDE Statement
	SELECT Statement
	REPLACE Statement

	IEHMOVE Examples
	Example 1: Move Sequential Data Sets from Disk Volume to Separate Volumes
	Example 2: Move Partitioned Data Set to Disk Volume and Merge
	Example 3: Move Volume of Data Sets to Disk Volume
	Example 4: Move Partitioned Data Set to Allocated Space
	Example 5: Move and Unload Partitioned Data Sets Volume
	Example 6: Unload Sequential Data Set onto Unlabeled Tape Volume
	Example 7: Load Unloaded Sequential Data Sets from Labeled Tape
	Example 8: Move Cataloged Data Set Group

	Chapter 15. IEHPROGM (Program Maintenance) Program
	Scratching or Renaming a Data Set or Member
	Maintaining Data Set Passwords
	Adding Data Set Passwords
	Replacing Data Set Passwords
	Deleting Data Set Passwords
	Listing Password Entries

	Input and Output
	Control
	Job Control Statements
	EXEC Statement
	SYSPRINT DD Statement
	anyname DD Statement
	SYSIN DD Statement

	Utility Control Statements
	SCRATCH Statement
	RENAME Statement
	CATLG and UNCATLG Statements
	ADD (Add a Password) and REPLACE (Replace a Password) Statements
	DELETEP (Delete a Password) Statement
	LIST (List Information from a Password) Statement

	IEHPROGM Examples
	Example 1: Scratch Temporary System Data Sets
	Example 2: Scratch and Uncatalog Two Data Sets
	Example 3: Rename a Multi-Volume Data Set Catalog
	Example 4: Uncatalog Three Data Sets
	Example 5: Rename a Data Set and Define New Passwords
	Example 6: List and Replace Password Information
	Example 7: Rename a Partitioned Data Set Member

	Chapter 16. IFHSTATR (List ESV Data) Program
	Assessing the Quality of Tapes in a Library
	Input and Output
	Control
	IFHSTATR Example

	Appendix A. Invoking Utility Programs from an Application Program
	Building Parameter Lists
	Options List
	ddname List
	Page Header Parameter

	Return Codes
	IEBCOMPR Return Codes
	IEBCOPY Return Codes
	IEBCOPY User ABEND Codes

	IEBDG Return Codes
	IEBEDIT Return Codes
	IEBGENER Return Codes
	IEBIMAGE Return Codes
	IEBISAM Return Codes
	IEBPTPCH Return Codes
	IEBUPDTE Return Codes
	IEHINITT Return Codes
	IEHLIST Return Codes
	IEHMOVE Return Codes
	IEHPROGM Return Codes

	Appendix B. Unload Partitioned Data Set Format
	Introduction
	Records Present in an Unload Data Set
	Different Unload Data Set Formats
	Detailed Record Descriptions
	General Rules and Restrictions
	Header Records
	Directory Block Records
	Attribute Records
	Note List Records
	Member Data Records

	Appendix C. Specifying User Exits with Utility Programs
	General Guidance
	Register Contents at Entry to Routines from Utility Programs
	Programming Considerations
	Returning from an Exit Routine
	Parameters Passed to Label Processing Routines
	Parameters Passed to Nonlabel Processing Routines

	Processing User Labels
	Processing User Labels as Data Set Descriptors
	Exiting to a Totaling Routine
	Processing User Labels as Data

	Using an Exit Routine with IEBDG

	Appendix D. IEHLIST VTOC Listing
	Explanation of Fields in IEHLIST Formatted VTOC Listing

	Appendix E. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

